Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo

C. E. Graves, A. H. Reid, T. Wang, B. Wu, S. De Jong, K. Vahaplar, I. Radu, D. P. Bernstein, Marc Messerschmidt, L. Müller, R. Coffee, M. Bionta, S. W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl, H. Gorke, J. H. MentinkA. Tsukamoto, A. Fognini, J. J. Turner, W. F. Schlotter, D. Rolles, H. Soltau, L. Strüder, Y. Acremann, A. V. Kimel, A. Kirilyuk, Th Rasing, J. Stöhr, A. O. Scherz, H. A. Dürr

Research output: Contribution to journalArticle

162 Citations (Scopus)

Abstract

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (∼ 1 ps) spin reversal than in present technologies.

Original languageEnglish (US)
Pages (from-to)293-298
Number of pages6
JournalNature Materials
Volume12
Issue number4
DOIs
StatePublished - Apr 1 2013
Externally publishedYes

Fingerprint

Spin dynamics
Ultrafast lasers
Laser excitation
Momentum transfer
Angular momentum
momentum transfer
angular momentum
spin dynamics
Magnetic materials
excitation
lasers
X ray lasers
magnetic materials
Lasers
Magnetism
Diffraction
optical switching
Microstructure
inhomogeneity
spatial resolution

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Graves, C. E., Reid, A. H., Wang, T., Wu, B., De Jong, S., Vahaplar, K., ... Dürr, H. A. (2013). Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nature Materials, 12(4), 293-298. https://doi.org/10.1038/nmat3597

Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. / Graves, C. E.; Reid, A. H.; Wang, T.; Wu, B.; De Jong, S.; Vahaplar, K.; Radu, I.; Bernstein, D. P.; Messerschmidt, Marc; Müller, L.; Coffee, R.; Bionta, M.; Epp, S. W.; Hartmann, R.; Kimmel, N.; Hauser, G.; Hartmann, A.; Holl, P.; Gorke, H.; Mentink, J. H.; Tsukamoto, A.; Fognini, A.; Turner, J. J.; Schlotter, W. F.; Rolles, D.; Soltau, H.; Strüder, L.; Acremann, Y.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th; Stöhr, J.; Scherz, A. O.; Dürr, H. A.

In: Nature Materials, Vol. 12, No. 4, 01.04.2013, p. 293-298.

Research output: Contribution to journalArticle

Graves, CE, Reid, AH, Wang, T, Wu, B, De Jong, S, Vahaplar, K, Radu, I, Bernstein, DP, Messerschmidt, M, Müller, L, Coffee, R, Bionta, M, Epp, SW, Hartmann, R, Kimmel, N, Hauser, G, Hartmann, A, Holl, P, Gorke, H, Mentink, JH, Tsukamoto, A, Fognini, A, Turner, JJ, Schlotter, WF, Rolles, D, Soltau, H, Strüder, L, Acremann, Y, Kimel, AV, Kirilyuk, A, Rasing, T, Stöhr, J, Scherz, AO & Dürr, HA 2013, 'Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo', Nature Materials, vol. 12, no. 4, pp. 293-298. https://doi.org/10.1038/nmat3597
Graves, C. E. ; Reid, A. H. ; Wang, T. ; Wu, B. ; De Jong, S. ; Vahaplar, K. ; Radu, I. ; Bernstein, D. P. ; Messerschmidt, Marc ; Müller, L. ; Coffee, R. ; Bionta, M. ; Epp, S. W. ; Hartmann, R. ; Kimmel, N. ; Hauser, G. ; Hartmann, A. ; Holl, P. ; Gorke, H. ; Mentink, J. H. ; Tsukamoto, A. ; Fognini, A. ; Turner, J. J. ; Schlotter, W. F. ; Rolles, D. ; Soltau, H. ; Strüder, L. ; Acremann, Y. ; Kimel, A. V. ; Kirilyuk, A. ; Rasing, Th ; Stöhr, J. ; Scherz, A. O. ; Dürr, H. A. / Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. In: Nature Materials. 2013 ; Vol. 12, No. 4. pp. 293-298.
@article{d1a6f4445d5142d39656b29e436b4366,
title = "Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo",
abstract = "Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (∼ 1 ps) spin reversal than in present technologies.",
author = "Graves, {C. E.} and Reid, {A. H.} and T. Wang and B. Wu and {De Jong}, S. and K. Vahaplar and I. Radu and Bernstein, {D. P.} and Marc Messerschmidt and L. M{\"u}ller and R. Coffee and M. Bionta and Epp, {S. W.} and R. Hartmann and N. Kimmel and G. Hauser and A. Hartmann and P. Holl and H. Gorke and Mentink, {J. H.} and A. Tsukamoto and A. Fognini and Turner, {J. J.} and Schlotter, {W. F.} and D. Rolles and H. Soltau and L. Str{\"u}der and Y. Acremann and Kimel, {A. V.} and A. Kirilyuk and Th Rasing and J. St{\"o}hr and Scherz, {A. O.} and D{\"u}rr, {H. A.}",
year = "2013",
month = "4",
day = "1",
doi = "10.1038/nmat3597",
language = "English (US)",
volume = "12",
pages = "293--298",
journal = "Nature Materials",
issn = "1476-1122",
publisher = "Nature Publishing Group",
number = "4",

}

TY - JOUR

T1 - Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo

AU - Graves, C. E.

AU - Reid, A. H.

AU - Wang, T.

AU - Wu, B.

AU - De Jong, S.

AU - Vahaplar, K.

AU - Radu, I.

AU - Bernstein, D. P.

AU - Messerschmidt, Marc

AU - Müller, L.

AU - Coffee, R.

AU - Bionta, M.

AU - Epp, S. W.

AU - Hartmann, R.

AU - Kimmel, N.

AU - Hauser, G.

AU - Hartmann, A.

AU - Holl, P.

AU - Gorke, H.

AU - Mentink, J. H.

AU - Tsukamoto, A.

AU - Fognini, A.

AU - Turner, J. J.

AU - Schlotter, W. F.

AU - Rolles, D.

AU - Soltau, H.

AU - Strüder, L.

AU - Acremann, Y.

AU - Kimel, A. V.

AU - Kirilyuk, A.

AU - Rasing, Th

AU - Stöhr, J.

AU - Scherz, A. O.

AU - Dürr, H. A.

PY - 2013/4/1

Y1 - 2013/4/1

N2 - Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (∼ 1 ps) spin reversal than in present technologies.

AB - Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (∼ 1 ps) spin reversal than in present technologies.

UR - http://www.scopus.com/inward/record.url?scp=84875430389&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84875430389&partnerID=8YFLogxK

U2 - 10.1038/nmat3597

DO - 10.1038/nmat3597

M3 - Article

C2 - 23503010

AN - SCOPUS:84875430389

VL - 12

SP - 293

EP - 298

JO - Nature Materials

JF - Nature Materials

SN - 1476-1122

IS - 4

ER -