Nanoscale charge-order dynamics in stripe-phase nickelates probed via ultrafast THz spectroscopy

G. Coslovich, S. Behl, B. Huber, H. A. Bechtel, T. Sasagawa, M. C. Martin, R. A. Kaindl

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We discuss equilibrium and ultrafast optical pump-THz probe spectroscopy of the model stripe-ordered system La1.75Sr0.25NiO4. We present a multi-oscillator analysis of the phonon bending mode splitting observed at low temperatures in equilibrium, along with a variational model for the transient THz reflectivity variations. The low temperature splitting is directly related to the formation of the long-range stripe-order, while the background conductivity is reminiscent of the opening of the mid-IR pseudogap. Ultrafast experiments in the multi-THz spectral range show strong THz reflectivity variations around the phonon bending mode frequency (∼11 THz).

Original languageEnglish (US)
Title of host publicationUltrafast Phenomena and Nanophotonics XIX
EditorsMarkus Betz, Kong-Thon Tsen, Abdulhakem Y. Elezzabi
PublisherSPIE
ISBN (Electronic)9781628414516
DOIs
StatePublished - 2015
Externally publishedYes
EventUltrafast Phenomena and Nanophotonics XIX - San Francisco, United States
Duration: Feb 8 2015Feb 11 2015

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9361
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceUltrafast Phenomena and Nanophotonics XIX
Country/TerritoryUnited States
CitySan Francisco
Period2/8/152/11/15

Keywords

  • THz spectroscopy
  • charge order
  • nickelate
  • phonon dynamics
  • pseudogap
  • stripes
  • ultrafast dynamics

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Nanoscale charge-order dynamics in stripe-phase nickelates probed via ultrafast THz spectroscopy'. Together they form a unique fingerprint.

Cite this