Mystic: Mystifying IP cores using an always-ON FSM obfuscation method

Ahmad Patooghy, Ehsan Aerabi, Hamidreza Rezaei, Miguel Mark, Mahdi Fazeli, Michel A. Kinsy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The separation of manufacturing and design processes in the integrated circuit industry to tackle the ever increasing circuit complexity and time to market issues has brought with it some major security challenges. Chief among them is IP piracy by untrusted parties. Hardware obfuscation which locks the functionality and modifies the structure of an IP core to protect it from malicious modifications or piracy has been proposed as a solution. In this paper, we develop an efficient hardware obfuscation method, called Mystic (Mystifying IP Cores), to protect IP cores from reverse engineering, IP overproduction, and IP piracy. The key idea behind Mystic is to add additional state transitions to the original/functional FSM (Finite State Machine) that are taken only when incorrect keys are applied to the circuit. Using the proposed Mystic obfuscation approach, the underlying functionality of the IP core is locked and normal FSM transitions are only available to authorized chip users. The synthesis results of ITC99 circuit benchmarks for ASIC 45nm technology reveal that the Mystic protection method imposes on average 5.14% area overhead, 5.21% delay overhead, and 8.06% power consumption overheads while it exponentially lowers the probability that an unauthorized user will gain access to or derive the chip functionality.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2018
PublisherIEEE Computer Society
Pages626-631
Number of pages6
ISBN (Print)9781538670996
DOIs
StatePublished - Aug 7 2018
Externally publishedYes
Event17th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2018 - Hong Kong, Hong Kong
Duration: Jul 9 2018Jul 11 2018

Publication series

NameProceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
Volume2018-July
ISSN (Print)2159-3469
ISSN (Electronic)2159-3477

Conference

Conference17th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2018
Country/TerritoryHong Kong
CityHong Kong
Period7/9/187/11/18

Keywords

  • Hardware Security
  • Logic encryption
  • Logic masking
  • Obfuscation

ASJC Scopus subject areas

  • Hardware and Architecture
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Mystic: Mystifying IP cores using an always-ON FSM obfuscation method'. Together they form a unique fingerprint.

Cite this