Mutually orthogonal latin squares (MOLS)

R. Julian R. Abel, Charles Colbourn, Jeffrey H. Dinitz

Research output: Chapter in Book/Report/Conference proceedingChapter

113 Citations (Scopus)

Abstract

RTDλ(k, n). Its λ-parallel classes are B1,..., Bn. This process can be reversed to form a TDλ(k + 1, n) from an RTDλ(k, n). 3.14 Example A resolvable TD(4, 4) derived from the TD(5, 4) in Example 3.11. On the element set {1, 2, 3, 4}× {2, 3, 4, 5}, the blocks are: (equation found) Each row is a parallel class.

Original languageEnglish (US)
Title of host publicationHandbook of Combinatorial Designs, Second Edition
PublisherCRC Press
Pages160-193
Number of pages34
ISBN (Electronic)9781420010541
ISBN (Print)9781584885061
StatePublished - Jan 1 2006

Fingerprint

Mutually Orthogonal Latin Squares
Class

ASJC Scopus subject areas

  • Mathematics(all)
  • Computer Science(all)

Cite this

Abel, R. J. R., Colbourn, C., & Dinitz, J. H. (2006). Mutually orthogonal latin squares (MOLS). In Handbook of Combinatorial Designs, Second Edition (pp. 160-193). CRC Press.

Mutually orthogonal latin squares (MOLS). / Abel, R. Julian R.; Colbourn, Charles; Dinitz, Jeffrey H.

Handbook of Combinatorial Designs, Second Edition. CRC Press, 2006. p. 160-193.

Research output: Chapter in Book/Report/Conference proceedingChapter

Abel, RJR, Colbourn, C & Dinitz, JH 2006, Mutually orthogonal latin squares (MOLS). in Handbook of Combinatorial Designs, Second Edition. CRC Press, pp. 160-193.
Abel RJR, Colbourn C, Dinitz JH. Mutually orthogonal latin squares (MOLS). In Handbook of Combinatorial Designs, Second Edition. CRC Press. 2006. p. 160-193
Abel, R. Julian R. ; Colbourn, Charles ; Dinitz, Jeffrey H. / Mutually orthogonal latin squares (MOLS). Handbook of Combinatorial Designs, Second Edition. CRC Press, 2006. pp. 160-193
@inbook{b8e90a2a8cc6492eb05fb0607228946a,
title = "Mutually orthogonal latin squares (MOLS)",
abstract = "RTDλ(k, n). Its λ-parallel classes are B1,..., Bn. This process can be reversed to form a TDλ(k + 1, n) from an RTDλ(k, n). 3.14 Example A resolvable TD(4, 4) derived from the TD(5, 4) in Example 3.11. On the element set {1, 2, 3, 4}× {2, 3, 4, 5}, the blocks are: (equation found) Each row is a parallel class.",
author = "Abel, {R. Julian R.} and Charles Colbourn and Dinitz, {Jeffrey H.}",
year = "2006",
month = "1",
day = "1",
language = "English (US)",
isbn = "9781584885061",
pages = "160--193",
booktitle = "Handbook of Combinatorial Designs, Second Edition",
publisher = "CRC Press",

}

TY - CHAP

T1 - Mutually orthogonal latin squares (MOLS)

AU - Abel, R. Julian R.

AU - Colbourn, Charles

AU - Dinitz, Jeffrey H.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - RTDλ(k, n). Its λ-parallel classes are B1,..., Bn. This process can be reversed to form a TDλ(k + 1, n) from an RTDλ(k, n). 3.14 Example A resolvable TD(4, 4) derived from the TD(5, 4) in Example 3.11. On the element set {1, 2, 3, 4}× {2, 3, 4, 5}, the blocks are: (equation found) Each row is a parallel class.

AB - RTDλ(k, n). Its λ-parallel classes are B1,..., Bn. This process can be reversed to form a TDλ(k + 1, n) from an RTDλ(k, n). 3.14 Example A resolvable TD(4, 4) derived from the TD(5, 4) in Example 3.11. On the element set {1, 2, 3, 4}× {2, 3, 4, 5}, the blocks are: (equation found) Each row is a parallel class.

UR - http://www.scopus.com/inward/record.url?scp=85058081568&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058081568&partnerID=8YFLogxK

M3 - Chapter

AN - SCOPUS:85058081568

SN - 9781584885061

SP - 160

EP - 193

BT - Handbook of Combinatorial Designs, Second Edition

PB - CRC Press

ER -