Abstract
In recent years, silicon photovoltaic technologies utilizing amorphous silicon (a-Si) to form heterojunction solar cells with thin intrinsic (HIT) passivating layers have consistently demonstrated high efficiencies (>20%) including a world record efficiency of 25.6%, high fill factor's and high open circuit voltages (VOC > 700 mV). Further improvements in efficiency require a rigorous approach to better understand and improve device behavior. In this work we analyze the transport and device performance of heterojunction cells by applying a multiscale simulation methodology. Our multiscale solver consists of three primary domains, namely; the drift-diffusion (DD) domain, the ensemble Monte Carlo (EMC) and the kinetic Monte Carlo (KMC) domain. Using our multiscale methodology we investigate the role of midgap defects in the a-Si and interface defects at the crystalline silicon (c-Si) and a-Si heterointerface. Simulations indicate that recombination at the interface is a key limiting factor in device performance and contributes to the 'S' shaped current voltage characteristic. We have also used commercial device simulator SILVACO to investigate the role of surface potential at the heterointerface.
Original language | English (US) |
---|---|
Title of host publication | 2016 IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3547-3551 |
Number of pages | 5 |
Volume | 2016-November |
ISBN (Electronic) | 9781509027248 |
DOIs | |
State | Published - Nov 18 2016 |
Event | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States Duration: Jun 5 2016 → Jun 10 2016 |
Other
Other | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 6/5/16 → 6/10/16 |
Keywords
- amorphous silicon
- device modeling
- heterojunction
- solar cells
ASJC Scopus subject areas
- Control and Systems Engineering
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering