Multiple sensor arrays for single cell metabolic analysis

Ganquan Song, Rishabh M. Shetty, Haixin Zhu, Shashanka Ashili, Liqiang Zhang, Grace Kim, Andrew Shabilla, Wacey Teller, Qian Mei, Laimonas Kelbauskas, Yanqing Tian, Hong Wang, Roger H. Johnson, Deirdre Meldrum

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We present the design, fabrication and characterization of multiple micro-pocket lid arrays used in live single cell metabolic analysis. In previous work we reported a platform for quantifying single cell oxygen consumption rates realized using a fused silica deep wet etching process. Here we extend that work to a dual-depth wet etching process for microfabrication of multiple sensor trapping (MST) lid arrays. Each lid comprises multiple micro-pockets. Oxygen, pH, other extra-cellular sensors, and reference dye were deposited in the pockets. In order to achieve simultaneous monitoring of multiple metabolic parameters, the lid array serves to hermetically seal arrays of microwells, each containing a single cell. The dual-depth etching process we developed can be easily applied to other glass-based microfabrication purposes requiring dual- or multiple-depth microstructures.

Original languageEnglish (US)
Title of host publicationIEEE SENSORS 2013 - Proceedings
PublisherIEEE Computer Society
ISBN (Print)9781467346405
DOIs
StatePublished - Jan 1 2013
Event12th IEEE SENSORS 2013 Conference - Baltimore, MD, United States
Duration: Nov 4 2013Nov 6 2013

Publication series

NameProceedings of IEEE Sensors

Other

Other12th IEEE SENSORS 2013 Conference
Country/TerritoryUnited States
CityBaltimore, MD
Period11/4/1311/6/13

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Multiple sensor arrays for single cell metabolic analysis'. Together they form a unique fingerprint.

Cite this