We employ both adaptive spatial and temporal degrees of freedom to separate multiple signals impinging upon an RF convergence antenna-array receiver. Motivated by the maximum-likelihood methodology, we construct a multiple-access receiver algorithm for mixed communications and radar signal types. We denote this algorithm as a multiple-channel multiple-user receiver (MCMUR). The signals include communications signals, traditional radar-return waveforms, and interference waveforms. The resulting receiver employs iterative alternating projections to maximize performance. In addition to improving the ability to separate signals, the spatial degrees of freedom improve the convergence rate. We discuss the theory of multiaccess receivers in this context in terms of capacity and detection performance. We provide a derivation of the receiver and discuss extensions that are effective in dispersive environments. We simulate a simple RF convergence scenario as an example.

Original languageEnglish (US)
Title of host publicationConference Record of the 52nd Asilomar Conference on Signals, Systems and Computers, ACSSC 2018
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Number of pages5
ISBN (Electronic)9781538692189
StatePublished - Feb 19 2019
Event52nd Asilomar Conference on Signals, Systems and Computers, ACSSC 2018 - Pacific Grove, United States
Duration: Oct 28 2018Oct 31 2018

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (Print)1058-6393


Conference52nd Asilomar Conference on Signals, Systems and Computers, ACSSC 2018
Country/TerritoryUnited States
CityPacific Grove

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications


Dive into the research topics of 'Multiple-Channel Multiple-User Receiver for Joint Radar and Communications Systems'. Together they form a unique fingerprint.

Cite this