Multi-scale heat kernel based volumetric morphology signature

Gang Wang, Yalin Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that may improve statistical power on the structural analysis. The mechanism of this analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use the volumetric Laplace- Beltrami operator to determine the point pair correspondence between two boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a multi-scale volumetric morphology signature to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the volumetric morphology signatures and generate the internal structure features. The multi-scale and physics based internal structure features may bring stronger statistical power than other traditional methods for volumetric morphology analysis. To validate our method, we apply support vector machine to classify synthetic data and brain MR images. In our experiments, the proposed work outperformed FreeSurfer thickness features in Alzheimer’s disease patient and normal control subject classification analysis.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer-Assisted Intervention – MICCAI 2015 - 18th International Conference, Proceedings
EditorsAlejandro F. Frangi, Nassir Navab, Joachim Hornegger, William M. Wells
PublisherSpringer Verlag
Pages751-759
Number of pages9
ISBN (Print)9783319245737
DOIs
StatePublished - 2015
Event18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015 - Munich, Germany
Duration: Oct 5 2015Oct 9 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9351
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
CountryGermany
CityMunich
Period10/5/1510/9/15

Keywords

  • Heat kernel
  • Point distribution model
  • Support vector machine
  • Volumetric Laplace-Beltrami operator

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Multi-scale heat kernel based volumetric morphology signature'. Together they form a unique fingerprint.

Cite this