Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma

Leland S. Hu, Shuluo Ning, Jennifer M. Eschbacher, Nathan Gaw, Amylou C. Dueck, Kris A. Smith, Peter Nakaji, Jonathan Plasencia, Sara Ranjbar, Stephen J. Price, Nhan Tran, Joseph Loftus, Robert Jenkins, Brian P. O'Neill, William Elmquist, Leslie C. Baxter, Fei Gao, David Frakes, John P. Karis, Christine ZwartKristin R. Swanson, Jann Sarkaria, Teresa Wu, J. Ross Mitchell, Jing Li

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

Background: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ∼60%of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. Methods: We recruited primary GBM patients undergoing image-guided biopsies and acquired preoperative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs

Original languageEnglish (US)
Article numbere0141506
JournalPLoS One
Volume10
Issue number11
DOIs
StatePublished - Nov 1 2015

    Fingerprint

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Hu, L. S., Ning, S., Eschbacher, J. M., Gaw, N., Dueck, A. C., Smith, K. A., Nakaji, P., Plasencia, J., Ranjbar, S., Price, S. J., Tran, N., Loftus, J., Jenkins, R., O'Neill, B. P., Elmquist, W., Baxter, L. C., Gao, F., Frakes, D., Karis, J. P., ... Li, J. (2015). Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One, 10(11), [e0141506]. https://doi.org/10.1371/journal.pone.0141506