Moreau-Yosida regularization for grouped tree structure learning

Jun Liu, Jieping Ye

Research output: Chapter in Book/Report/Conference proceedingConference contribution

113 Citations (Scopus)

Abstract

We consider the tree structured group Lasso where the structure over the features can be represented as a tree with leaf nodes as features and internal nodes as clusters of the features. The structured regularization with a pre-defined tree structure is based on a group-Lasso penalty, where one group is defined for each node in the tree. Such a regularization can help uncover the structured sparsity, which is desirable for applications with some meaningful tree structures on the features. However, the tree structured group Lasso is challenging to solve due to the complex regularization. In this paper, we develop an efficient algorithm for the tree structured group Lasso. One of the key steps in the proposed algorithm is to solve the Moreau-Yosida regularization associated with the grouped tree structure. The main technical contributions of this paper include (1) we show that the associated Moreau-Yosida regularization admits an analytical solution, and (2) we develop an efficient algorithm for determining the effective interval for the regularization parameter. Our experimental results on the AR and JAFFE face data sets demonstrate the efficiency and effectiveness of the proposed algorithm.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
StatePublished - 2010
Event24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 - Vancouver, BC, Canada
Duration: Dec 6 2010Dec 9 2010

Other

Other24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
CountryCanada
CityVancouver, BC
Period12/6/1012/9/10

ASJC Scopus subject areas

  • Information Systems

Cite this

Liu, J., & Ye, J. (2010). Moreau-Yosida regularization for grouped tree structure learning. In Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

Moreau-Yosida regularization for grouped tree structure learning. / Liu, Jun; Ye, Jieping.

Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010. 2010.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Liu, J & Ye, J 2010, Moreau-Yosida regularization for grouped tree structure learning. in Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010. 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010, Vancouver, BC, Canada, 12/6/10.
Liu J, Ye J. Moreau-Yosida regularization for grouped tree structure learning. In Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010. 2010
Liu, Jun ; Ye, Jieping. / Moreau-Yosida regularization for grouped tree structure learning. Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010. 2010.
@inproceedings{54a42fbc8d984e73829aa6f5f949be18,
title = "Moreau-Yosida regularization for grouped tree structure learning",
abstract = "We consider the tree structured group Lasso where the structure over the features can be represented as a tree with leaf nodes as features and internal nodes as clusters of the features. The structured regularization with a pre-defined tree structure is based on a group-Lasso penalty, where one group is defined for each node in the tree. Such a regularization can help uncover the structured sparsity, which is desirable for applications with some meaningful tree structures on the features. However, the tree structured group Lasso is challenging to solve due to the complex regularization. In this paper, we develop an efficient algorithm for the tree structured group Lasso. One of the key steps in the proposed algorithm is to solve the Moreau-Yosida regularization associated with the grouped tree structure. The main technical contributions of this paper include (1) we show that the associated Moreau-Yosida regularization admits an analytical solution, and (2) we develop an efficient algorithm for determining the effective interval for the regularization parameter. Our experimental results on the AR and JAFFE face data sets demonstrate the efficiency and effectiveness of the proposed algorithm.",
author = "Jun Liu and Jieping Ye",
year = "2010",
language = "English (US)",
isbn = "9781617823800",
booktitle = "Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010",

}

TY - GEN

T1 - Moreau-Yosida regularization for grouped tree structure learning

AU - Liu, Jun

AU - Ye, Jieping

PY - 2010

Y1 - 2010

N2 - We consider the tree structured group Lasso where the structure over the features can be represented as a tree with leaf nodes as features and internal nodes as clusters of the features. The structured regularization with a pre-defined tree structure is based on a group-Lasso penalty, where one group is defined for each node in the tree. Such a regularization can help uncover the structured sparsity, which is desirable for applications with some meaningful tree structures on the features. However, the tree structured group Lasso is challenging to solve due to the complex regularization. In this paper, we develop an efficient algorithm for the tree structured group Lasso. One of the key steps in the proposed algorithm is to solve the Moreau-Yosida regularization associated with the grouped tree structure. The main technical contributions of this paper include (1) we show that the associated Moreau-Yosida regularization admits an analytical solution, and (2) we develop an efficient algorithm for determining the effective interval for the regularization parameter. Our experimental results on the AR and JAFFE face data sets demonstrate the efficiency and effectiveness of the proposed algorithm.

AB - We consider the tree structured group Lasso where the structure over the features can be represented as a tree with leaf nodes as features and internal nodes as clusters of the features. The structured regularization with a pre-defined tree structure is based on a group-Lasso penalty, where one group is defined for each node in the tree. Such a regularization can help uncover the structured sparsity, which is desirable for applications with some meaningful tree structures on the features. However, the tree structured group Lasso is challenging to solve due to the complex regularization. In this paper, we develop an efficient algorithm for the tree structured group Lasso. One of the key steps in the proposed algorithm is to solve the Moreau-Yosida regularization associated with the grouped tree structure. The main technical contributions of this paper include (1) we show that the associated Moreau-Yosida regularization admits an analytical solution, and (2) we develop an efficient algorithm for determining the effective interval for the regularization parameter. Our experimental results on the AR and JAFFE face data sets demonstrate the efficiency and effectiveness of the proposed algorithm.

UR - http://www.scopus.com/inward/record.url?scp=84860642773&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860642773&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9781617823800

BT - Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

ER -