More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster

Shayan Shiehzadegan, Jacqueline Le Vinh Thuy, Natalia Szabla, Michael Angilletta, John M. VandenBrooks

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life.

Original languageEnglish (US)
Article numbere0177827
JournalPloS one
Volume12
Issue number5
DOIs
StatePublished - May 2017

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster'. Together they form a unique fingerprint.

  • Cite this