Monthly lunar declination extremes' influence on tropospheric circulation patterns

Daniel S. Krahenbuhl, Matthew B. Pace, Randall Cerveny, Robert Balling

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Short-term tidal variations occurring every 27.3 days from southern (negative) to northern (positive) maximum lunar declinations (MLDs), and back to southern declination of the moon have been overlooked in weather studies. These short-term MLD variations' significance is that when lunar declination is greatest, tidal forces operating on the high latitudes of both hemispheres are maximized. We find that such tidal forces deform the high latitude Rossby longwaves. Using the NCEP/NCAR reanalysis data set, we identify that the 27.3 day MLD cycle's influence on circulation is greatest in the upper troposphere of both hemispheres' high latitudes. The effect is distinctly regional with high impact over central North America and the British Isles. Through this lunar variation, midlatitude weather forecasting for two-week forecast periods may be significantly improved.

Original languageEnglish (US)
Article numberD23121
JournalJournal of Geophysical Research Atmospheres
Volume116
Issue number23
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint

Dive into the research topics of 'Monthly lunar declination extremes' influence on tropospheric circulation patterns'. Together they form a unique fingerprint.

Cite this