Modeling of master oscillator-power amplifier (MOPA) semiconductor lasers

Peter M. Skovgaard, John G. McInerney, Jerome V. Moloney, Robert A. Indik, Cun Z. Ning

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Monolithically integrated flared amplifier master oscillator power amplifier (MFA-MOPA) semiconductor lasers are studied theoretically using a high resolution computational model which resolved times and longitudinal and transverse space dependencies and includes Lorentzian gain and dispersion spectra. The simulations show that, by altering the linear flare of the power amplifier into a nonlinear, trumpet- shaped flare, the dynamic stability range of the MOPA is increased by a factor of 3. This enables the MOPA to maintain a stable, nearly diffraction limited output beam for higher currents before the onset of transverse instabilities, large beam divergence and facet damage due to filamentation. Thus the MOPA will be able to emit an output beam of significantly higher power and brightness.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Pages801-809
Number of pages9
ISBN (Print)0819424056
StatePublished - Dec 1 1997
Externally publishedYes
EventPhysics and Simulation of Optoelectronic Devices V - San Jose, CA, USA
Duration: Feb 10 1997Feb 14 1997

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume2994
ISSN (Print)0277-786X

Other

OtherPhysics and Simulation of Optoelectronic Devices V
CitySan Jose, CA, USA
Period2/10/972/14/97

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Modeling of master oscillator-power amplifier (MOPA) semiconductor lasers'. Together they form a unique fingerprint.

Cite this