Modeling dilute gas-solid turbulent boundary layers using moment methods

D. M. Dunn, Kyle Squires

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The specific focus of the current effort is on modeling dilute particle-laden turbulent boundary layers in which the gasphase carrier flow is populated with a second phase of small, dispersed solid particles possessing material densities much larger than that of the carrier flow. A novel approach known as the conditional quadrature method of moments (CQMOM) developed by Yuan and Fox [1], derived from the quadrature-based method of moments (QMOM) developed originally by McGraw[2], is being implemented to model the dispersed particles as an Eu-lerian phase. Both enabled and disabled inter-particle collision treatments are included in the model for a dispersed phase coupled to the fluid via a drag force acting on the particles. Simulations are conducted with a Reynolds number of 2800 based on the boundary layer thickness at the inlet to the domain. The full 3-D mesh contains 800×128×98 structured cells with overall dimensions in terms of the inlet boundary layer thickness of 80×6 × 4 in the streamwise, spanwise, and wall-normal directions, respectively. The gas-phase carrier flow is computed using Direct Numerical Simulation of the incompressible Navier-Stokes equations. The boundary layer develops spatially from a turbulent inflow condition and drives the particulate phase via drag and collisions. Comparisons are made against simulations performed using Lagrangian-based discrete particle simulation (DPS) of the dispersed phase and demonstrate the utility of the Eulerian moment method approach. Both instantaneous and time-averaged quantities are presented.

Original languageEnglish (US)
Title of host publicationSymposia
Subtitle of host publicationFundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846230
DOIs
StatePublished - Jan 1 2014
EventASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels - Chicago, United States
Duration: Aug 3 2014Aug 7 2014

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1C
ISSN (Print)0888-8116

Other

OtherASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
CountryUnited States
CityChicago
Period8/3/148/7/14

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Modeling dilute gas-solid turbulent boundary layers using moment methods'. Together they form a unique fingerprint.

Cite this