TY - JOUR
T1 - Modeling Dark Current Conduction Mechanisms and Mitigation Techniques in Vertically Stacked Amorphous Selenium-Based Photodetectors
AU - Ho, Le Thanh Triet
AU - Mukherjee, Atreyo
AU - Vasileska, Dragica
AU - Akis, John
AU - Stavro, Jann
AU - Zhao, Wei
AU - Goldan, Amir H.
N1 - Funding Information:
We gratefully acknowledge financial support from the National Institutes of Health (No. R01EB026644). The authors acknowledge Research Computing at Arizona State University for providing (HPC, storage etc.) resources that have contributed to the research results reported in this paper. One of the authors (D.V.) also acknowledges the financial support from NSF (ECCS 1542160). The author D.V. also gratefully acknowledges the academic donation of Silvaco TCAD tools by Silvaco Inc. used in this study.
Funding Information:
We gratefully acknowledge financial support from the National Institutes of Health (No. R01EB026644). The authors acknowledge Research Computing at Arizona State University for providing (HPC, storage, etc.) resources that have contributed to the research results reported in this paper. One of the authors (D.V.) also acknowledges the financial support from NSF (ECCS 1542160). The author D.V. also gratefully acknowledges the academic donation of Silvaco TCAD tools by Silvaco Inc. used in this study.
Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/8/24
Y1 - 2021/8/24
N2 - Amorphous selenium (a-Se) with its single-carrier and non-Markovian, hole impact ionization process can revolutionize low-light detection and emerge to be a solid-state replacement to the vacuum photomultiplier tube (PMT). Although a-Se-based solid-state avalanche detectors can ideally provide gains comparable to PMTs, their development has been severely limited by the irreversible breakdown of inefficient hole blocking layers (HBLs). Thus, understanding of the transport characteristics and ways to control electrical hot spots and, thereby, the breakdown voltage is key to improving the performance of avalanche a-Se devices. Simulations using Atlas, SILVACO, were employed to identify relevant conduction mechanisms in a-Se-based detectors: space-charge-limited current, bulk thermal generation, Schottky emission, Poole-Frenkel activated mobility, and hopping conduction. Simulation parameters were obtained from experimental data and first-principle calculations. The theoretical models were validated by comparing them with experimental steady-state dark current densities in avalanche and nonavalanche a-Se detectors. To maintain bulk thermal generation-limited dark current levels in a-Se detectors, a high-permittivity noninsulating material is required to substantially decrease the electric field at the electrode/hole blocking layer interface, thus preventing injection from the high-voltage electrode. This, in turn, prevents Joule heating from crystallizing the a-Se layer, consequently avoiding early dielectric breakdown of the device.
AB - Amorphous selenium (a-Se) with its single-carrier and non-Markovian, hole impact ionization process can revolutionize low-light detection and emerge to be a solid-state replacement to the vacuum photomultiplier tube (PMT). Although a-Se-based solid-state avalanche detectors can ideally provide gains comparable to PMTs, their development has been severely limited by the irreversible breakdown of inefficient hole blocking layers (HBLs). Thus, understanding of the transport characteristics and ways to control electrical hot spots and, thereby, the breakdown voltage is key to improving the performance of avalanche a-Se devices. Simulations using Atlas, SILVACO, were employed to identify relevant conduction mechanisms in a-Se-based detectors: space-charge-limited current, bulk thermal generation, Schottky emission, Poole-Frenkel activated mobility, and hopping conduction. Simulation parameters were obtained from experimental data and first-principle calculations. The theoretical models were validated by comparing them with experimental steady-state dark current densities in avalanche and nonavalanche a-Se detectors. To maintain bulk thermal generation-limited dark current levels in a-Se detectors, a high-permittivity noninsulating material is required to substantially decrease the electric field at the electrode/hole blocking layer interface, thus preventing injection from the high-voltage electrode. This, in turn, prevents Joule heating from crystallizing the a-Se layer, consequently avoiding early dielectric breakdown of the device.
KW - Silvaco
KW - TCAD modeling
KW - amorphous selenium
KW - avalanche photodetectors
KW - modeling disordered materials
UR - http://www.scopus.com/inward/record.url?scp=85113690193&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113690193&partnerID=8YFLogxK
U2 - 10.1021/acsaelm.1c00444
DO - 10.1021/acsaelm.1c00444
M3 - Article
AN - SCOPUS:85113690193
VL - 3
SP - 3538
EP - 3546
JO - ACS Applied Electronic Materials
JF - ACS Applied Electronic Materials
SN - 2637-6113
IS - 8
ER -