### Abstract

Recently, there has been much interest in coupled quantum dots. With individual dots, if the energy levels can be resolved, then one can think of a dot as representing an "artificial atom" [1]. Thus, fabricating multiple quantum dots by using a split metal gate pattern over a GaAs-AlGaAs heterostructure, and allowing the dots to couple via quantum point contacts (QPCs), provides a way of creating "artificial molecules≤[2]. Modeling such structures using a finite difference approach, we obtain the self-consistent confining potentials that are used in a 2-dimensional Schrödinger solver. The eigenstates of the resulting coupled systems show hybridization effects analogous to that of true molecules. Moreover, many of the eigenstates of these systems show evidence of wave function scarring, a phenomenon where the probability amplitude of the eigenstate is maximized along the path of a classical trajectory.

Original language | English (US) |
---|---|

Title of host publication | 2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000 |

Editors | M. Laudon, B. Romanowicz |

Pages | 441-444 |

Number of pages | 4 |

State | Published - Dec 1 2000 |

Event | 2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000 - San Diego, CA, United States Duration: Mar 27 2000 → Mar 29 2000 |

### Publication series

Name | 2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000 |
---|

### Other

Other | 2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000 |
---|---|

Country | United States |

City | San Diego, CA |

Period | 3/27/00 → 3/29/00 |

### Fingerprint

### Keywords

- Chaos
- Heterostructures
- Mesoscopic
- Periodic orbits
- Quantum dots

### ASJC Scopus subject areas

- Engineering(all)

### Cite this

*2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000*(pp. 441-444). (2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000).