A common difficulty in applications of machine learning is the lack of any general principle for guiding the choices of key parameters of the underlying neural network. Focusing on a class of recurrent neural networks - reservoir computing systems, which have recently been exploited for model-free prediction of nonlinear dynamical systems - we uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized. In a three-dimensional representation of the error versus the time and spectral radius, the interval corresponds to the bottom region of a "valley."Such a valley arises for a variety of spatiotemporal dynamical systems described by nonlinear partial differential equations, regardless of the structure and the edge-weight distribution of the underlying reservoir network. We also find that, while the particular location and size of the valley depend on the details of the target system to be predicted, the interval tends to be larger for undirected than for directed networks. The valley phenomenon can be beneficial to the design of optimal reservoir computing, representing a small step forward in understanding these machine-learning systems.

Original languageEnglish (US)
Article number033056
JournalPhysical Review Research
Issue number3
StatePublished - Oct 2019

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius'. Together they form a unique fingerprint.

Cite this