Mixture-process variable experiments including control and noise variables within a split-plot structure

Tae Yeon Cho, Connie M. Borror, Douglas Montgomery

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In mixture-process variables experiments, it is common that the experimental runs are larger than the mixture only design or basic experimental design to estimate the increased coefficient parameters due to the mixture components, process variable, and interaction between mixture and process variables, some of which are hard to change or cannot be controlled under normal operating condition. These situations often prohibit a complete randomisation for the experimental runs due to the time or financial reason. These types of experiments can be analysed in a model for the mean response and a model for the slope of the response within a split-plot structure. When considering the experimental designs, low prediction variances for the mean and slope model are desirable. We demonstrate the methods for the mixture-process variable designs with noise variables considering a restricted randomisation and evaluate some mixture-process variable designs that are robust to the coefficients of interaction with noise variables using fraction of design space plots with the respect to the prediction variance properties. Finally, we create the G-optimal design that minimises the maximum prediction variance over the entire design region using a genetic algorithm.

Original languageEnglish (US)
Pages (from-to)1-28
Number of pages28
JournalInternational Journal of Quality Engineering and Technology
Volume2
Issue number1
DOIs
StatePublished - 2011

Fingerprint

Experiments
Design of experiments
Genetic algorithms
Optimal design

Keywords

  • FDS
  • fraction of design space
  • GA
  • genetic algorithm
  • mixture-process variable experiments
  • noise variables
  • optimal design
  • quality engineering
  • robust parameter design
  • split-plot design

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality

Cite this

Mixture-process variable experiments including control and noise variables within a split-plot structure. / Cho, Tae Yeon; Borror, Connie M.; Montgomery, Douglas.

In: International Journal of Quality Engineering and Technology, Vol. 2, No. 1, 2011, p. 1-28.

Research output: Contribution to journalArticle

@article{bdbdde79e8da4e04a5c27d2ce6804e38,
title = "Mixture-process variable experiments including control and noise variables within a split-plot structure",
abstract = "In mixture-process variables experiments, it is common that the experimental runs are larger than the mixture only design or basic experimental design to estimate the increased coefficient parameters due to the mixture components, process variable, and interaction between mixture and process variables, some of which are hard to change or cannot be controlled under normal operating condition. These situations often prohibit a complete randomisation for the experimental runs due to the time or financial reason. These types of experiments can be analysed in a model for the mean response and a model for the slope of the response within a split-plot structure. When considering the experimental designs, low prediction variances for the mean and slope model are desirable. We demonstrate the methods for the mixture-process variable designs with noise variables considering a restricted randomisation and evaluate some mixture-process variable designs that are robust to the coefficients of interaction with noise variables using fraction of design space plots with the respect to the prediction variance properties. Finally, we create the G-optimal design that minimises the maximum prediction variance over the entire design region using a genetic algorithm.",
keywords = "FDS, fraction of design space, GA, genetic algorithm, mixture-process variable experiments, noise variables, optimal design, quality engineering, robust parameter design, split-plot design",
author = "Cho, {Tae Yeon} and Borror, {Connie M.} and Douglas Montgomery",
year = "2011",
doi = "10.1504/IJQET.2011.038719",
language = "English (US)",
volume = "2",
pages = "1--28",
journal = "International Journal of Quality Engineering and Technology",
issn = "1757-2177",
publisher = "Inderscience Publishers",
number = "1",

}

TY - JOUR

T1 - Mixture-process variable experiments including control and noise variables within a split-plot structure

AU - Cho, Tae Yeon

AU - Borror, Connie M.

AU - Montgomery, Douglas

PY - 2011

Y1 - 2011

N2 - In mixture-process variables experiments, it is common that the experimental runs are larger than the mixture only design or basic experimental design to estimate the increased coefficient parameters due to the mixture components, process variable, and interaction between mixture and process variables, some of which are hard to change or cannot be controlled under normal operating condition. These situations often prohibit a complete randomisation for the experimental runs due to the time or financial reason. These types of experiments can be analysed in a model for the mean response and a model for the slope of the response within a split-plot structure. When considering the experimental designs, low prediction variances for the mean and slope model are desirable. We demonstrate the methods for the mixture-process variable designs with noise variables considering a restricted randomisation and evaluate some mixture-process variable designs that are robust to the coefficients of interaction with noise variables using fraction of design space plots with the respect to the prediction variance properties. Finally, we create the G-optimal design that minimises the maximum prediction variance over the entire design region using a genetic algorithm.

AB - In mixture-process variables experiments, it is common that the experimental runs are larger than the mixture only design or basic experimental design to estimate the increased coefficient parameters due to the mixture components, process variable, and interaction between mixture and process variables, some of which are hard to change or cannot be controlled under normal operating condition. These situations often prohibit a complete randomisation for the experimental runs due to the time or financial reason. These types of experiments can be analysed in a model for the mean response and a model for the slope of the response within a split-plot structure. When considering the experimental designs, low prediction variances for the mean and slope model are desirable. We demonstrate the methods for the mixture-process variable designs with noise variables considering a restricted randomisation and evaluate some mixture-process variable designs that are robust to the coefficients of interaction with noise variables using fraction of design space plots with the respect to the prediction variance properties. Finally, we create the G-optimal design that minimises the maximum prediction variance over the entire design region using a genetic algorithm.

KW - FDS

KW - fraction of design space

KW - GA

KW - genetic algorithm

KW - mixture-process variable experiments

KW - noise variables

KW - optimal design

KW - quality engineering

KW - robust parameter design

KW - split-plot design

UR - http://www.scopus.com/inward/record.url?scp=84857280603&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857280603&partnerID=8YFLogxK

U2 - 10.1504/IJQET.2011.038719

DO - 10.1504/IJQET.2011.038719

M3 - Article

AN - SCOPUS:84857280603

VL - 2

SP - 1

EP - 28

JO - International Journal of Quality Engineering and Technology

JF - International Journal of Quality Engineering and Technology

SN - 1757-2177

IS - 1

ER -