TY - JOUR
T1 - Minimizing the effects of oxygen interference on L-lactate sensors by a single amino acid mutation in Aerococcus viridans L-lactate oxidase
AU - Hiraka, Kentaro
AU - Kojima, Katsuhiro
AU - Lin, Chi En
AU - Tsugawa, Wakako
AU - Asano, Ryutaro
AU - LaBelle, Jeffrey
AU - Sode, Koji
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/4/30
Y1 - 2018/4/30
N2 - L-lactate biosensors employing L-lactate oxidase (LOx) have been developed mainly to measure L-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some L-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of L-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5 mM L-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9–12% due to oxygen interference. The Ala96Leu mutant maintained 56–69% of the response current at the same L-lactate level and minimized the relative bias error to −19% from −49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of L-lactate concentrations.
AB - L-lactate biosensors employing L-lactate oxidase (LOx) have been developed mainly to measure L-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some L-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of L-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5 mM L-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9–12% due to oxygen interference. The Ala96Leu mutant maintained 56–69% of the response current at the same L-lactate level and minimized the relative bias error to −19% from −49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of L-lactate concentrations.
KW - Biomedical engineering
KW - L-lactate
KW - L-lactate oxidase
KW - Oxygen
KW - Screen-printed carbon electrode
KW - Site-directed mutagenesis
UR - http://www.scopus.com/inward/record.url?scp=85039554184&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85039554184&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2017.12.018
DO - 10.1016/j.bios.2017.12.018
M3 - Article
C2 - 29279290
AN - SCOPUS:85039554184
SN - 0956-5663
VL - 103
SP - 163
EP - 170
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
ER -