Minimally invasive intracranial pressure monitoring: An epidural approach with a piezoresistive probe

Jonathan Garich, Nicholas Fritz, Dixie Kullman, Jesse Munoz, Jennifer Blain Christen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We demonstrate a minimally invasive intracranial pressure (ICP) monitoring system using a piezoresistive sensor. Our previous work in ICP monitoring used an obscure sensor, small pressure range, and manual induction by hand compressions. In this work, we use a widely available FDA-approved sensor and extend the study to meet the ANSI/AAMI standards. We also include controlled mechanical and physiologically-induced ICP modulation. We verified the system using a water column up to 100 mmHg. We tested our system in vivo with a rat model. The results generally show excellent agreement between our custom ICP sensing system and a commercial gold standard.

Original languageEnglish (US)
Title of host publication2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-4
Number of pages4
ISBN (Electronic)9781509058037
DOIs
StatePublished - Jul 2 2017
Event2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Torino, Italy
Duration: Oct 19 2017Oct 21 2017

Publication series

Name2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Proceedings
Volume2018-January

Other

Other2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017
Country/TerritoryItaly
CityTorino
Period10/19/1710/21/17

ASJC Scopus subject areas

  • Biomedical Engineering
  • Electrical and Electronic Engineering
  • Instrumentation

Fingerprint

Dive into the research topics of 'Minimally invasive intracranial pressure monitoring: An epidural approach with a piezoresistive probe'. Together they form a unique fingerprint.

Cite this