Minimal Differential Difference Realizations of Delay Differential, Differential Difference, and Neutral Delay Systems

Research output: Contribution to journalArticlepeer-review

Abstract

Delay-Differential Equations (DDEs) are often used to represent control of and over large networks. However, the presence of delay makes the problems of analysis and control of such networks challenging. Recently, Differential Difference Equations (DDFs) have been proposed as a modelling framework which allows us to more efficiently represent the low-dimensional nature of delayed channels in a network or large-scale delayed system. Unfortunately, however, the standard conversion formulae from DDE to DDF do not account for this low-dimensional structure - hence any efficient DDF representation of a large delayed network or system must be hand-crafted. In this letter, we propose an algorithm for constructing DDF realizations of both DDE and DDF systems wherein the dimension of the delayed channels has been minimized. Furthermore, we provide a convenient PIETOOLS implementation of these algorithms and show that the algorithm significantly reduces the complexity of the model for several illustrative examples, including Neutral Delay Systems (NDSs).

Original languageEnglish (US)
Article number9261405
Pages (from-to)1471-1476
Number of pages6
JournalIEEE Control Systems Letters
Volume5
Issue number4
DOIs
StateAccepted/In press - 2020

Keywords

  • Computational methods
  • delay systems
  • distributed parameter systems
  • modeling
  • network analysis and control

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Minimal Differential Difference Realizations of Delay Differential, Differential Difference, and Neutral Delay Systems'. Together they form a unique fingerprint.

Cite this