Mid- And far-infrared absorption of alkali borate glasses and the limit of superionic conductivity

Changle Liu, C. A. Angell

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Transmission spectra of alkali borate glass films of known thickness have been studied as a function of film thickness in the frequency range 50-2000 cm-1, and the composition range 0-70 mol % Na2O. The apparent absorption coefficient of the Na+ "rattling" mode at ≈200 cm-1 becomes almost independent of film thickness for d > 5 μ, implying that the absorption coefficient α of the bulk glass can be determined with reasonable accuracy, α proves to be a linear function of alkali oxide content. We use the value of α to estimate the ionic conductivity at infrared frequencies, and argue that this value establishes the theoretical maximum for superionic conductivity - it lies some 10 orders of magnitude above the ambient temperature conductivity of the high alkali glass. It is suggested that the peak value of the IR conductivity is connected to the ac conductivity of glass by a log σ(f) vs log/regime of unit slope [specifically σ/(S cm-1) = 10-12.3f] up to 100 GHz, followed by a short f2 regime. The mid-IR spectra indicate the presence of four coordinated borons with maximum concentration at 40 mol % Na2 O, and confirm that B2O5 4- and BO33- moities dominate the structure at the high alkali extreme.

Original languageEnglish (US)
Pages (from-to)7378-7386
Number of pages9
JournalThe Journal of chemical physics
Volume93
Issue number10
DOIs
StatePublished - Jan 1 1990
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Mid- And far-infrared absorption of alkali borate glasses and the limit of superionic conductivity'. Together they form a unique fingerprint.

Cite this