Microscale Mechanism of Age Dependent Wetting Properties of Prickly Pear Cacti (Opuntia)

Konrad Rykaczewski, Jacob S. Jordan, Rubin Linder, Erik T. Woods, Xiaoda Sun, Nicholas Kemme, Kenneth C. Manning, Brian Cherry, Jeffery Yarger, Lucas C. Majure

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Cacti thrive in xeric environments through specialized water storage and collection tactics such as a shallow, widespread root system that maximizes rainwater absorption and spines adapted for fog droplet collection. However, in many cacti, the epidermis, not the spines, dominates the exterior surface area. Yet, little attention has been dedicated to studying interactions of the cactus epidermis with water drops. Surprisingly, the epidermis of plants in the genus Opuntia, also known as prickly pear cacti, has water-repelling characteristics. In this work, we report that surface properties of cladodes of 25 taxa of Opuntia grown in an arid Sonoran climate switch from water-repelling to superwetting under water impact over the span of a single season. We show that the old cladode surfaces are not superhydrophilic, but have nearly vanishing receding contact angle. We study water drop interactions with, as well as nano/microscale topology and chemistry of, the new and old cladodes of two Opuntia species and use this information to uncover the microscopic mechanism underlying this phenomenon. We demonstrate that composition of extracted wax and its contact angle do not change significantly with time. Instead, we show that the reported age dependent wetting behavior primarily stems from pinning of the receding contact line along multilayer surface microcracks in the epicuticular wax that expose the underlying highly hydrophilic layers.

Original languageEnglish (US)
Pages (from-to)9335-9341
Number of pages7
JournalLangmuir
Volume32
Issue number36
DOIs
StatePublished - Sep 13 2016

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Microscale Mechanism of Age Dependent Wetting Properties of Prickly Pear Cacti (Opuntia)'. Together they form a unique fingerprint.

  • Cite this

    Rykaczewski, K., Jordan, J. S., Linder, R., Woods, E. T., Sun, X., Kemme, N., Manning, K. C., Cherry, B., Yarger, J., & Majure, L. C. (2016). Microscale Mechanism of Age Dependent Wetting Properties of Prickly Pear Cacti (Opuntia). Langmuir, 32(36), 9335-9341. https://doi.org/10.1021/acs.langmuir.6b02173