Abstract

We report a strain sensing approach that utilizes wrinkled patterns on poly (dimethylsiloxane) (PDMS) as an optical grating to measure thermally-induced strain of different materials. The mechanism for the strain sensing and the effect of PDMS grating on strain sensing are discussed. By bonding the PDMS grating onto a copper or silicon substrate, the coefficient of thermal expansion (CTE) of the substrates can be deduced by measuring the diffraction angle change due to the change in PDMS grating periodicity when thermal strain is introduced. The measured CTEs agree well with the known reference values.

Original languageEnglish (US)
Pages (from-to)11994-12001
Number of pages8
JournalOptics Express
Volume21
Issue number10
DOIs
StatePublished - May 20 2013

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating'. Together they form a unique fingerprint.

Cite this