TY - JOUR
T1 - Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds
AU - Trembath-Reichert, Elizabeth
AU - Morono, Yuki
AU - Ijiri, Akira
AU - Hoshino, Tatsuhiko
AU - Dawson, Katherine S.
AU - Inagaki, Fumio
AU - Orphan, Victoria J.
N1 - Funding Information:
ACKNOWLEDGMENTS. We thank the IODP for providing access and samples from the deep coalbed biosphere off Shimokita during Expedition 337. We thank the crew, drilling team members, laboratory technicians, and scientists on the drilling vessel Chikyu for supporting core sampling and onboard measurements. We also thank S. Fukunaga, S. Hashimoto, and A. Imajo [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] and T. Terada (Marine Works Japan, Ltd) for assistance in microbiological analyses; Y. Guan, F. Wu, C. Ma, and N. Dalleska (Caltech) for assistance with geochemical analyses; and A. L. Sessions, G. L. Chadwick, K. S. Metcalfe, M. K. Lloyd, and S. Kopf (Caltech) and H. Imachi (JAMSTEC) for feedback and valuable discussions. We appreciate the comments of two reviewers that also improved this manuscript. Funding for this work was provided by the Center for Dark Energy Biosphere (C-DEBI), NASA Astrobiology-Life Underground (NAI-LU; Award NNA13AA92A), the Gordon and Betty Moore Foundation Grant GBMF3780 (to V.J.O.), and Post Expedition Award (to E.T.-R. and V.J.O.), the Japan Society for the Promotion of Science (JSPS) Strategic Fund for Strengthening Leading-Edge Research and Development (F.I. and JAMSTEC), the JSPS Funding Program for Next Generation World-Leading Researchers (NEXT Program, Grant GR102 to F.I.), and JSPS Grants-in-Aid for Science Research (Grant 26251041 to F.I.; Grant 15K14907 to T.H.; and Grants 24687004, 15H05608, 24651018, 2665169, and 16K14817 to Y.M.). E.T.-R. was additionally supported, in part, by a Schlanger Ocean Drilling Fellowship, a C-DEBI travel grant for sample processing at the JAMSTEC Kochi Institute for Core Sample Research, and the Deep Life Cultivation Internship Program from the Deep Carbon Observatory (DCO). This is C-DEBI Grant contribution no. 389 and NAI-LU no. 314.
Publisher Copyright:
© 2017, National Academy of Sciences. All rights reserved.
PY - 2017/10/31
Y1 - 2017/10/31
N2 - The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
AB - The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
KW - Coal bed biosphere
KW - Microbial generation time
KW - NanoSIMS
KW - Stable isotope probing
KW - Subseafloor life
UR - http://www.scopus.com/inward/record.url?scp=85032620551&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032620551&partnerID=8YFLogxK
U2 - 10.1073/pnas.1707525114
DO - 10.1073/pnas.1707525114
M3 - Article
C2 - 29078310
AN - SCOPUS:85032620551
SN - 0027-8424
VL - 114
SP - E9206-E9215
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 44
ER -