Metamorphosis of chaotic saddle

Tomasz Kapitaniak, Ying Cheng Lai, Celso Grebogi

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Chaotic saddles are nonattracting dynamical invariant sets that can lead to a variety of physical phenomena. We report our finding and analysis of a type of discontinuous global bifurcation (metamorphosis) of chaotic saddle that occurs in high-dimensional chaotic systems with an invariant manifold. A metamorphosis occurs when a chaotic saddle, lying in the manifold, loses stability with respect to perturbations transverse to the invariant manifold. The fractal dimension of the chaotic saddle increases abruptly through the bifurcation. We illustrate our finding by using a system of coupled maps.

Original languageEnglish (US)
Pages (from-to)445-450
Number of pages6
JournalPhysics Letters, Section A: General, Atomic and Solid State Physics
Volume259
Issue number6
DOIs
StatePublished - Aug 30 1999

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this