Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa

David London, Richard Hervig, George B. Morgan VI

    Research output: Contribution to journalArticlepeer-review

    253 Scopus citations

    Abstract

    Vapor-saturated experiments at 200 MPa with peraluminous, lithophile-element-rich rhyolite obsidian from Macusani, Peru, reveal high miscibility of H 2 O and silicate melt components. The H 2 O content of melt at saturation (11.5+-0.5 wt.%) is almost twice that predicted by existing melt speciation models. The corresponding solubility of melt components in vapor decreases from 15 wt.% dissolved solids (750°-775° C) to 9 wt.% at 600° C. With regard to major and most minor components, macusanite melt dissolves congruently in vapor. Among the elements studied (B, P, F, Li, Rb, Cs, Be, Sr, Ba, Nb, Zr, Hf, Y, Pb, Th, U, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm), only boron has a vapor/melt partition coefficient (D[B]) consistently ≥1 at superliquidus temperatures (>645° C). Phosphorus and fluorine behave similarly, with D[P] and D[F]<0.5. Little or no significant vapor/melt fractionation is evident among most periodic groups (alkalis, alkaline earths, Zr/Hf, or the REE). The temperature dependence of vapor/melt partition coefficients is generally greatest for cations with charge ≥ +3 (except Nb and U); most vapor/melt partition coefficients for trace elements increase with decreasing temperature to the liquidus. Crystallization proceeds by condensation of crystalline phases from vapor; most coexisting melts are aphyric. Changes in the major element content of melt are dominated by the mineral assemblage crystallized from vapor, which includes subequal proportions of white mica, quartz, albite, and orthoclase. The volumetric proportion of (mica + or-thoclase)/albite increases slightly with decreasing T, creating a sodic, alkaline vapor. Vapor deposition of topaz (T≤500° C), which consumes F from melt, returns K/Na ratios of melt to near unity with the vapor-deposition of albite. The abundances of most trace elements in residual melt change little with the crystallization of major phases, but in some cases are strongly controlled by the deposition of accessory phases including apatite (T≤550° C), which depletes the melt in P and REE. Below the liquidus, boron increasingly favors the vapor over melt with decreasing temperatures.

    Original languageEnglish (US)
    Pages (from-to)360-373
    Number of pages14
    JournalContributions to Mineralogy and Petrology
    Volume99
    Issue number3
    DOIs
    StatePublished - Jul 1988

    ASJC Scopus subject areas

    • Geophysics
    • Geochemistry and Petrology

    Fingerprint

    Dive into the research topics of 'Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa'. Together they form a unique fingerprint.

    Cite this