Abstract
The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
Original language | English (US) |
---|---|
Article number | 4025 |
Journal | Nature communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2018 |
ASJC Scopus subject areas
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)
Fingerprint
Dive into the research topics of 'Megahertz serial crystallography'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Megahertz serial crystallography. / Wiedorn, Max O.; Oberthür, Dominik; Bean, Richard et al.
In: Nature communications, Vol. 9, No. 1, 4025, 01.12.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Megahertz serial crystallography
AU - Wiedorn, Max O.
AU - Oberthür, Dominik
AU - Bean, Richard
AU - Schubert, Robin
AU - Werner, Nadine
AU - Abbey, Brian
AU - Aepfelbacher, Martin
AU - Adriano, Luigi
AU - Allahgholi, Aschkan
AU - Al-Qudami, Nasser
AU - Andreasson, Jakob
AU - Aplin, Steve
AU - Awel, Salah
AU - Ayyer, Kartik
AU - Bajt, Saša
AU - Barák, Imrich
AU - Bari, Sadia
AU - Bielecki, Johan
AU - Botha, Sabine
AU - Boukhelef, Djelloul
AU - Brehm, Wolfgang
AU - Brockhauser, Sandor
AU - Cheviakov, Igor
AU - Coleman, Matthew A.
AU - Cruz-Mazo, Francisco
AU - Danilevski, Cyril
AU - Darmanin, Connie
AU - Doak, R. Bruce
AU - Domaracky, Martin
AU - Dörner, Katerina
AU - Du, Yang
AU - Fangohr, Hans
AU - Fleckenstein, Holger
AU - Frank, Matthias
AU - Fromme, Petra
AU - Gañán-Calvo, Alfonso M.
AU - Gevorkov, Yaroslav
AU - Giewekemeyer, Klaus
AU - Ginn, Helen Mary
AU - Graafsma, Heinz
AU - Graceffa, Rita
AU - Greiffenberg, Dominic
AU - Gumprecht, Lars
AU - Göttlicher, Peter
AU - Hajdu, Janos
AU - Hauf, Steffen
AU - Heymann, Michael
AU - Holmes, Susannah
AU - Horke, Daniel A.
AU - Hunter, Mark S.
AU - Imlau, Siegfried
AU - Kaukher, Alexander
AU - Kim, Yoonhee
AU - Klyuev, Alexander
AU - Knoška, Juraj
AU - Kobe, Bostjan
AU - Kuhn, Manuela
AU - Kupitz, Christopher
AU - Küpper, Jochen
AU - Lahey-Rudolph, Janine Mia
AU - Laurus, Torsten
AU - Le Cong, Karoline
AU - Letrun, Romain
AU - Xavier, P. Lourdu
AU - Maia, Luis
AU - Maia, Filipe R.N.C.
AU - Mariani, Valerio
AU - Messerschmidt, Marc
AU - Metz, Markus
AU - Mezza, Davide
AU - Michelat, Thomas
AU - Mills, Grant
AU - Monteiro, Diana C.F.
AU - Morgan, Andrew
AU - Mühlig, Kerstin
AU - Munke, Anna
AU - Münnich, Astrid
AU - Nette, Julia
AU - Nugent, Keith A.
AU - Nuguid, Theresa
AU - Orville, Allen M.
AU - Pandey, Suraj
AU - Pena, Gisel
AU - Villanueva-Perez, Pablo
AU - Poehlsen, Jennifer
AU - Previtali, Gianpietro
AU - Redecke, Lars
AU - Riekehr, Winnie Maria
AU - Rohde, Holger
AU - Round, Adam
AU - Safenreiter, Tatiana
AU - Sarrou, Iosifina
AU - Sato, Tokushi
AU - Schmidt, Marius
AU - Schmitt, Bernd
AU - Schönherr, Robert
AU - Schulz, Joachim
AU - Sellberg, Jonas A.
AU - Seibert, M. Marvin
AU - Seuring, Carolin
AU - Shelby, Megan L.
AU - Shoeman, Robert L.
AU - Sikorski, Marcin
AU - Silenzi, Alessandro
AU - Stan, Claudiu A.
AU - Shi, Xintian
AU - Stern, Stephan
AU - Sztuk-Dambietz, Jola
AU - Szuba, Janusz
AU - Tolstikova, Aleksandra
AU - Trebbin, Martin
AU - Trunk, Ulrich
AU - Vagovic, Patrik
AU - Ve, Thomas
AU - Weinhausen, Britta
AU - White, Thomas A.
AU - Wrona, Krzysztof
AU - Xu, Chen
AU - Yefanov, Oleksandr
AU - Zatsepin, Nadia
AU - Zhang, Jiaguo
AU - Perbandt, Markus
AU - Mancuso, Adrian P.
AU - Betzel, Christian
AU - Chapman, Henry
AU - Barty, Anton
N1 - Funding Information: We acknowledge European XFEL in Schenefeld, Germany, for provision of X-ray free-electron laser beamtime at Scientific Instrument SPB/SFX and would like to thank the instrument group and facility staff for their assistance. We also acknowledge useful discussions with John Spence, ASU; Arwen Pearson, UHH; and Ilme Schlichting, MPI-MF. We acknowledge the support of funding from: The excellence cluster "The Hamburg Center for Ultrafast Imaging–Structure, Dynamics and Control of Matter at the Atomic Scale" of the Deutsche Forschungsgemeinschaft (CUI, DFG-EXC1074); the European Research Council, “Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy (AXSIS)”, ERC-2013-SyG 609920 (2014-2018); the Gottfried Wilhelm Leibniz Program of the DFG; the project “X-probe” funded by the European Union’s 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement 637295; the BMBF German-Russian Cooperation “SyncFELMed” grant 05K14CHA; European Research Council under the European Union’s Seventh Framework Programme (FP7/ 2007-2013) through the Consolidator Grant COMOTION (ERC-614507-Küpper); the Helmholtz Gemeinschaft through the "Impuls und Vernetzungsfond"; Helmholtz Initiative and Networking Fund through the Young Investigators Program and by the Deutsche Forschungsgemeinschaft SFB755/B03; the DLR (Deutsche Zentrum für Luft und Raum-fahrt) via project 50WB142, the Swedish Research Council; the Knut and Alice Wallen-berg Foundation; the Röntgen-Angström Cluster; the BMBF via projects 05K13GU7 and 05E13GU1; from Ministry of Education, Science, Research and Sport of the Slovak Republic; the Joachim Herz Stiftung; the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence “Inflammation at interfaces” (EXC 306); the Swedish Research Council; the Swedish Foundation for Strategic Research; the Australian Research Council Center of Excellence in Advanced Molecular Imaging (CE140100011); the Australian Nuclear Science and Technology Organisation (ANSTO); the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron, part of ANSTO, and funded by the Australian Government; The projects Structural dynamics of biomolecular systems (CZ.02.1.01/0.0/0.0/15_003/0000447) (ELIBIO) and Advanced research using high-intensity laser produced photons and particles (CZ.02.1.01/0.0/0.0/16_019/0000789) (ADONIS) from European Regional Development Fund, the Ministry of Education, Youth and Sports as part of targeted support from the National Programme of Sustainability II; the Röntgen-Ångström-Cluster; the Chalmers Area of Advance, Material science; the Project DPI2016-78887-C3-1-R, Ministerio de Economía y Competitividad; the Wellcome Trust (studentship 075491/04); Rutgers University, Newark; the Max Planck Society; the NSF-STC “BioXFEL” through award STC-1231306; the Slovak Research and Development Agency under contract APVV-14-0181; the Wellcome Trust; Helmholtz Strategic Investment funds; Australian Research Council Centre of Excellence in Advanced Molecular Imaging (CE140100011), Australian Nuclear Science and Technology Organisation (ANSTO); The Swedish Research Council, the Knut and Alice Wallenberg Foundation, and the Röntgen-Angström Cluster, Ministry of Education, Science, Research and Sport of the Slovak Republic; BMBF grants 05K16GUA and 05K12GU3; the Joachim Herz Foundation through and Add-on Fellowship; NHMRC project grants 1107804 and 1108859, ARC Discovery Early Career Research Award (DE170100783); National Health and Medical Research Council (NHMRC) project grants 1107804, 1071659, 1071659 and Principal Research Fellowship (1110971). ARC Discovery Early Career Research Award (DE170100783); National Science Foundation Grant # 1565180, "ABI Innovation: New Algorithms for Biological X-ray Free Electron Laser Data"; Diamond Light Source and from a Strategic Award from the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (grant 102593); use of the XBI biological sample preparation laboratory, enabled by the XBI User Consortium. This work was performed, in part, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. M.L.S., M.A.C. and M.F. were supported by the NIH grant 1R01GM117342-01. Publisher Copyright: © 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
AB - The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
UR - http://www.scopus.com/inward/record.url?scp=85054197272&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054197272&partnerID=8YFLogxK
U2 - 10.1038/s41467-018-06156-7
DO - 10.1038/s41467-018-06156-7
M3 - Article
C2 - 30279492
AN - SCOPUS:85054197272
SN - 2041-1723
VL - 9
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4025
ER -