Matroid automorphisms of the the F 4 root system

Stephanie Fried, Aydin Gerek, Gary Gordon, Andrija Peruničič

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let F 4 be the root system associated with the 24-cell, and let M(F 4) be the simple linear dependence matroid corresponding to this root system. We determine the automorphism group of this matroid and compare it to the Coxeter group W for the root system. We find non-geometric automorphisms that preserve the matroid but not the root system.

Original languageEnglish (US)
Article numberR78
JournalElectronic Journal of Combinatorics
Volume14
Issue number1 R
StatePublished - Nov 12 2007
Externally publishedYes

Fingerprint

Root System
Matroid
Automorphisms
Linear dependence
Coxeter Group
Automorphism Group
Cell

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Theory and Mathematics

Cite this

Fried, S., Gerek, A., Gordon, G., & Peruničič, A. (2007). Matroid automorphisms of the the F 4 root system. Electronic Journal of Combinatorics, 14(1 R), [R78].

Matroid automorphisms of the the F 4 root system. / Fried, Stephanie; Gerek, Aydin; Gordon, Gary; Peruničič, Andrija.

In: Electronic Journal of Combinatorics, Vol. 14, No. 1 R, R78, 12.11.2007.

Research output: Contribution to journalArticle

Fried, S, Gerek, A, Gordon, G & Peruničič, A 2007, 'Matroid automorphisms of the the F 4 root system', Electronic Journal of Combinatorics, vol. 14, no. 1 R, R78.
Fried S, Gerek A, Gordon G, Peruničič A. Matroid automorphisms of the the F 4 root system. Electronic Journal of Combinatorics. 2007 Nov 12;14(1 R). R78.
Fried, Stephanie ; Gerek, Aydin ; Gordon, Gary ; Peruničič, Andrija. / Matroid automorphisms of the the F 4 root system. In: Electronic Journal of Combinatorics. 2007 ; Vol. 14, No. 1 R.
@article{b8d2b32cd66441758e40b5413a46b255,
title = "Matroid automorphisms of the the F 4 root system",
abstract = "Let F 4 be the root system associated with the 24-cell, and let M(F 4) be the simple linear dependence matroid corresponding to this root system. We determine the automorphism group of this matroid and compare it to the Coxeter group W for the root system. We find non-geometric automorphisms that preserve the matroid but not the root system.",
author = "Stephanie Fried and Aydin Gerek and Gary Gordon and Andrija Peruničič",
year = "2007",
month = "11",
day = "12",
language = "English (US)",
volume = "14",
journal = "Electronic Journal of Combinatorics",
issn = "1077-8926",
publisher = "Electronic Journal of Combinatorics",
number = "1 R",

}

TY - JOUR

T1 - Matroid automorphisms of the the F 4 root system

AU - Fried, Stephanie

AU - Gerek, Aydin

AU - Gordon, Gary

AU - Peruničič, Andrija

PY - 2007/11/12

Y1 - 2007/11/12

N2 - Let F 4 be the root system associated with the 24-cell, and let M(F 4) be the simple linear dependence matroid corresponding to this root system. We determine the automorphism group of this matroid and compare it to the Coxeter group W for the root system. We find non-geometric automorphisms that preserve the matroid but not the root system.

AB - Let F 4 be the root system associated with the 24-cell, and let M(F 4) be the simple linear dependence matroid corresponding to this root system. We determine the automorphism group of this matroid and compare it to the Coxeter group W for the root system. We find non-geometric automorphisms that preserve the matroid but not the root system.

UR - http://www.scopus.com/inward/record.url?scp=84858456036&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84858456036&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84858456036

VL - 14

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

SN - 1077-8926

IS - 1 R

M1 - R78

ER -