Abstract
We present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present with a mutation allowing the susceptible strain to become resistant as well as a back mutation allowing resistant fungus to again become susceptible. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual is treated with a fungicidal or fungistatic drug. The model demonstrates that under any levels of the drug both strains will be in stable co-existence and high levels of treatment will never completely eradicate the susceptible strain. A modified model is then described in which the drug is changed to one in which both strains are susceptible, and subsequently, at the appropriate level of treatment, complete eradication of both fungal strains ensues. We discuss the model and implications for treatment options within the context of an immune compromised patient.
Original language | English (US) |
---|---|
Pages (from-to) | 66-76 |
Number of pages | 11 |
Journal | Journal of Theoretical Biology |
Volume | 385 |
DOIs | |
State | Published - Nov 21 2015 |
Keywords
- Bifurcations
- Fungus
- Resistant strains
- Stability
- Susceptible strains
ASJC Scopus subject areas
- Statistics and Probability
- Modeling and Simulation
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics