Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient

Ulrich Nübel, Ferran Garcia-Pichel, Ester Clavero, Gerard Muyzer

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

The phylogenetic diversity of oxygenic phototrophic microorganisms in hypersaline microbial mats and their distribution along a salinity gradient were investigated and compared with the halotolerances of closely related cultivated strains. Segments of 16S rRNA genes from cyanobacteria and diatom plastids were retrieved from mat samples by DNA extraction and polymerase chain reaction (PCR), and subsequently analysed by denaturing gradient gel electrophoresis (DGGE). Sequence analyses of DNA from individual DGGE bands suggested that the majority of these organisms was related to cultivated strains at levels that had previously been demonstrated to correlate with characteristic salinity responses. Proportional abundances of amplified 16S rRNA gene segments from phylogenetic groupings of cyanobacteria and diatoms were estimated by image analysis of DGGE gels and were generally found to correspond to abundances of the respective morphotypes determined by microscopic analyses. The results indicated that diatoms accounted for low proportions of cells throughout, that the cyanobacterium Microcoleus chthonoplastes and close relatives dominated the communities up to a salinity of 11% and that, at a salinity of 14%, the most abundant cyanobacteria were related to highly halotolerant cultivated cyanobacteria, such as the recently established phylogenetic clusters of Euhalothece and Halospirulina. Although these organisms in cultures had previously demonstrated their ability to grow with close to optimal rates over a wide range of salinities, their occurrence in the field was restricted to the highest salinities investigated.

Original languageEnglish (US)
Pages (from-to)217-226
Number of pages10
JournalEnvironmental microbiology
Volume2
Issue number2
DOIs
StatePublished - Jan 1 2000
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Ecology, Evolution, Behavior and Systematics

Fingerprint

Dive into the research topics of 'Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient'. Together they form a unique fingerprint.

Cite this