Abstract

Microwave resonator measurements were performed on high-performance microwave ceramics Ba(Zn1/3Ta2/3)O3 (BZT) and Ba(Zn1/3Nb2/3)O3 (BZN) containing additives commonly used by commercial manufacturers (i.e., Co, Mn, and Ni). We find that the loss tangent, even in ambient magnetic fields, is dominated by electron paramagnetic resonance (EPR) absorption by exchange-coupled 3d electrons in transition metal clusters at cryogenic temperatures. The large orbital angular momentum in Co2+ and Ni2+ ions of L = 3 causes strong anisotropicbroadened dipolar interactions that extend EPR losses to zero applied field. This effect is greatest in BZN with Co concentrations greater than 0.5 mol%, dominating the losses at liquid nitrogen temperatures (77 K) and below. In samples containing Mn2+ ions with L = 0, the dipolar interactions and associated EPR losses in ambient fields are smaller. We show the magnetic-field-dependent changes in the EPR losses (i.e., tan δ) and magnetic reactive response (i.e., μr) are from the same mechanism, as they follow the Kramers-Kronig relation. Finally, we note that these materials can make ultra-high Q passive microwave devices with externally controlled transfer functions, as the quality factor (Q) of the composition Ba(Co1/15Zn4/15Nb2/3)O3 at 77 K can be tuned from 1 100 to 12 000 at 10 GHz by applying practical magnetic fields.

Original languageEnglish (US)
Pages (from-to)1188-1194
Number of pages7
JournalJournal of the American Ceramic Society
Volume98
Issue number4
DOIs
StatePublished - 2015

Fingerprint

Cryogenics
Transition metals
Microwaves
Paramagnetic resonance
Magnetic fields
Temperature
Kramers-Kronig relations
Microwave resonators
Ions
Microwave devices
Angular momentum
Liquid nitrogen
Transfer functions
Electrons
Chemical analysis

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry

Cite this

Main source of microwave loss in transition-metal-doped Ba(Zn1/3Ta2/3)O3and Ba(Zn1/3Nb2/3)O3at cryogenic temperatures. / Zhang, Shengke; Devonport, Alex; Newman, Nathan.

In: Journal of the American Ceramic Society, Vol. 98, No. 4, 2015, p. 1188-1194.

Research output: Contribution to journalArticle

@article{b11ddf92e20b4ea2870d325b880c5f3b,
title = "Main source of microwave loss in transition-metal-doped Ba(Zn1/3Ta2/3)O3and Ba(Zn1/3Nb2/3)O3at cryogenic temperatures",
abstract = "Microwave resonator measurements were performed on high-performance microwave ceramics Ba(Zn1/3Ta2/3)O3 (BZT) and Ba(Zn1/3Nb2/3)O3 (BZN) containing additives commonly used by commercial manufacturers (i.e., Co, Mn, and Ni). We find that the loss tangent, even in ambient magnetic fields, is dominated by electron paramagnetic resonance (EPR) absorption by exchange-coupled 3d electrons in transition metal clusters at cryogenic temperatures. The large orbital angular momentum in Co2+ and Ni2+ ions of L = 3 causes strong anisotropicbroadened dipolar interactions that extend EPR losses to zero applied field. This effect is greatest in BZN with Co concentrations greater than 0.5 mol{\%}, dominating the losses at liquid nitrogen temperatures (77 K) and below. In samples containing Mn2+ ions with L = 0, the dipolar interactions and associated EPR losses in ambient fields are smaller. We show the magnetic-field-dependent changes in the EPR losses (i.e., tan δ) and magnetic reactive response (i.e., μr) are from the same mechanism, as they follow the Kramers-Kronig relation. Finally, we note that these materials can make ultra-high Q passive microwave devices with externally controlled transfer functions, as the quality factor (Q) of the composition Ba(Co1/15Zn4/15Nb2/3)O3 at 77 K can be tuned from 1 100 to 12 000 at 10 GHz by applying practical magnetic fields.",
author = "Shengke Zhang and Alex Devonport and Nathan Newman",
year = "2015",
doi = "10.1111/jace.13419",
language = "English (US)",
volume = "98",
pages = "1188--1194",
journal = "Journal of the American Ceramic Society",
issn = "0002-7820",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Main source of microwave loss in transition-metal-doped Ba(Zn1/3Ta2/3)O3and Ba(Zn1/3Nb2/3)O3at cryogenic temperatures

AU - Zhang, Shengke

AU - Devonport, Alex

AU - Newman, Nathan

PY - 2015

Y1 - 2015

N2 - Microwave resonator measurements were performed on high-performance microwave ceramics Ba(Zn1/3Ta2/3)O3 (BZT) and Ba(Zn1/3Nb2/3)O3 (BZN) containing additives commonly used by commercial manufacturers (i.e., Co, Mn, and Ni). We find that the loss tangent, even in ambient magnetic fields, is dominated by electron paramagnetic resonance (EPR) absorption by exchange-coupled 3d electrons in transition metal clusters at cryogenic temperatures. The large orbital angular momentum in Co2+ and Ni2+ ions of L = 3 causes strong anisotropicbroadened dipolar interactions that extend EPR losses to zero applied field. This effect is greatest in BZN with Co concentrations greater than 0.5 mol%, dominating the losses at liquid nitrogen temperatures (77 K) and below. In samples containing Mn2+ ions with L = 0, the dipolar interactions and associated EPR losses in ambient fields are smaller. We show the magnetic-field-dependent changes in the EPR losses (i.e., tan δ) and magnetic reactive response (i.e., μr) are from the same mechanism, as they follow the Kramers-Kronig relation. Finally, we note that these materials can make ultra-high Q passive microwave devices with externally controlled transfer functions, as the quality factor (Q) of the composition Ba(Co1/15Zn4/15Nb2/3)O3 at 77 K can be tuned from 1 100 to 12 000 at 10 GHz by applying practical magnetic fields.

AB - Microwave resonator measurements were performed on high-performance microwave ceramics Ba(Zn1/3Ta2/3)O3 (BZT) and Ba(Zn1/3Nb2/3)O3 (BZN) containing additives commonly used by commercial manufacturers (i.e., Co, Mn, and Ni). We find that the loss tangent, even in ambient magnetic fields, is dominated by electron paramagnetic resonance (EPR) absorption by exchange-coupled 3d electrons in transition metal clusters at cryogenic temperatures. The large orbital angular momentum in Co2+ and Ni2+ ions of L = 3 causes strong anisotropicbroadened dipolar interactions that extend EPR losses to zero applied field. This effect is greatest in BZN with Co concentrations greater than 0.5 mol%, dominating the losses at liquid nitrogen temperatures (77 K) and below. In samples containing Mn2+ ions with L = 0, the dipolar interactions and associated EPR losses in ambient fields are smaller. We show the magnetic-field-dependent changes in the EPR losses (i.e., tan δ) and magnetic reactive response (i.e., μr) are from the same mechanism, as they follow the Kramers-Kronig relation. Finally, we note that these materials can make ultra-high Q passive microwave devices with externally controlled transfer functions, as the quality factor (Q) of the composition Ba(Co1/15Zn4/15Nb2/3)O3 at 77 K can be tuned from 1 100 to 12 000 at 10 GHz by applying practical magnetic fields.

UR - http://www.scopus.com/inward/record.url?scp=85027936008&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027936008&partnerID=8YFLogxK

U2 - 10.1111/jace.13419

DO - 10.1111/jace.13419

M3 - Article

AN - SCOPUS:85027936008

VL - 98

SP - 1188

EP - 1194

JO - Journal of the American Ceramic Society

JF - Journal of the American Ceramic Society

SN - 0002-7820

IS - 4

ER -