MAGE: Matching approximate patterns in richly-attributed graphs

Robert Pienta, Acar Tamersoy, Hanghang Tong, Duen Horng Chau

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Given a large graph with millions of nodes and edges, say a social network where both its nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of interest (e.g., a ring of businessmen with strong ties)? We present MAGE, a scalable, multicore subgraph matching approach that supports expressive queries over large, richly-attributed graphs. Our major contributions include: (1) MAGE supports graphs with both node and edge attributes (most existing approaches handle either one, but not both); (2) it supports expressive queries, allowing multiple attributes on an edge, wildcards as attribute values (i.e., match any permissible values), and attributes with continuous values; and (3) it is scalable, supporting graphs with several hundred million edges. We demonstrate MAGE's effectiveness and scalability via extensive experiments on large real and synthetic graphs, such as a Google+ social network with 460 million edges.

Original languageEnglish (US)
Title of host publicationProceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014
EditorsWo Chang, Jun Huan, Nick Cercone, Saumyadipta Pyne, Vasant Honavar, Jimmy Lin, Xiaohua Tony Hu, Charu Aggarwal, Bamshad Mobasher, Jian Pei, Raghunath Nambiar
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages585-590
Number of pages6
ISBN (Electronic)9781479956654
DOIs
StatePublished - Jan 7 2015
Event2nd IEEE International Conference on Big Data, IEEE Big Data 2014 - Washington, United States
Duration: Oct 27 2014Oct 30 2014

Publication series

NameProceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014

Other

Other2nd IEEE International Conference on Big Data, IEEE Big Data 2014
CountryUnited States
CityWashington
Period10/27/1410/30/14

    Fingerprint

ASJC Scopus subject areas

  • Artificial Intelligence
  • Information Systems

Cite this

Pienta, R., Tamersoy, A., Tong, H., & Chau, D. H. (2015). MAGE: Matching approximate patterns in richly-attributed graphs. In W. Chang, J. Huan, N. Cercone, S. Pyne, V. Honavar, J. Lin, X. T. Hu, C. Aggarwal, B. Mobasher, J. Pei, & R. Nambiar (Eds.), Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014 (pp. 585-590). [7004278] (Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BigData.2014.7004278