Machine learning on microstructural chemical maps to classify component phases in cement pastes

Emily Ford, Kailasnath Maneparambil, Narayanan Neithalath

Research output: Contribution to journalArticlepeer-review

Abstract

This paper implements machine learning (ML) classification algorithms on microstructural chemical maps to predict the constituent phases. Intensities of chemical species (Ca, Al, Si, etc.), and in some cases the nanomechanical properties measured at the corresponding points, form the input to the ML model, which predicts the phase label (LD or HD C-S-H, clinker etc.) belonging to that location. Artificial neural networks (ANN) and forest ensemble methods are used for classification. Confusion matrices and receiver-operator characteristic (ROC) curves are used to analyze the classification efficiency. It is shown that, for complex microstructures such as those of ultra-high performance (UHP) pastes, the classifier performs well when nanomechanical information augments the chemical intensity data. For simpler systems such as well-hydrated plain cement pastes, the classifier accurately predicts the phase label from the intensities of Ca, Al, and Si alone. The work enables fast-and-efficient phase identification and property forecasting from microstructural chemical maps.

Original languageEnglish (US)
Pages (from-to)1-20
Number of pages20
JournalJournal of Soft Computing in Civil Engineering
Volume5
Issue number4
DOIs
StatePublished - 2021

Keywords

  • Cement pastes
  • Chemical mapping
  • Machine learning
  • Microstructure
  • Nanoindentation
  • Ultra-high performance concrete

ASJC Scopus subject areas

  • Computer Science Applications
  • Artificial Intelligence
  • Civil and Structural Engineering
  • Building and Construction

Fingerprint

Dive into the research topics of 'Machine learning on microstructural chemical maps to classify component phases in cement pastes'. Together they form a unique fingerprint.

Cite this