LTR retroelements in the genome of Daphnia pulex

Mina Rho, Sarah Schaack, Xiang Gao, Sun Kim, Michael Lynch, Haixu Tang

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Background: Long terminal repeat (LTR) retroelements represent a successful group of transposable elements (TEs) that have played an important role in shaping the structure of many eukaryotic genomes. Here, we present a genome-wide analysis of LTR retroelements in Daphnia pulex, a cyclical parthenogen and the first crustacean for which the whole genomic sequence is available. In addition, we analyze transcriptional data and perform transposon display assays of lab-reared lineages and natural isolates to identify potential influences on TE mobility and differences in LTR retroelements loads among individuals reproducing with and without sex.Results: We conducted a comprehensive de novo search for LTR retroelements and identified 333 intact LTR retroelements representing 142 families in the D. pulex genome. While nearly half of the identified LTR retroelements belong to the gypsy group, we also found copia (95), BEL/Pao (66) and DIRS (19) retroelements. Phylogenetic analysis of reverse transcriptase sequences showed that LTR retroelements in the D. pulex genome form many lineages distinct from known families, suggesting that the majority are novel. Our investigation of transcriptional activity of LTR retroelements using tiling array data obtained from three different experimental conditions found that 71 LTR retroelements are actively transcribed. Transposon display assays of mutation-accumulation lines showed evidence for putative somatic insertions for two DIRS retroelement families. Losses of presumably heterozygous insertions were observed in lineages in which selfing occurred, but never in asexuals, highlighting the potential impact of reproductive mode on TE abundance and distribution over time. The same two families were also assayed across natural isolates (both cyclical parthenogens and obligate asexuals) and there were more retroelements in populations capable of reproducing sexually for one of the two families assayed.Conclusions: Given the importance of LTR retroelements activity in the evolution of other genomes, this comprehensive survey provides insight into the potential impact of LTR retroelements on the genome of D. pulex, a cyclically parthenogenetic microcrustacean that has served as an ecological model for over a century.

Original languageEnglish (US)
Article number425
JournalBMC Genomics
Volume11
Issue number1
DOIs
StatePublished - Jul 9 2010
Externally publishedYes

Fingerprint

Daphnia
Retroelements
Terminal Repeat Sequences
Genome
DNA Transposable Elements
Roma
RNA-Directed DNA Polymerase

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Cite this

Rho, M., Schaack, S., Gao, X., Kim, S., Lynch, M., & Tang, H. (2010). LTR retroelements in the genome of Daphnia pulex. BMC Genomics, 11(1), [425]. https://doi.org/10.1186/1471-2164-11-425

LTR retroelements in the genome of Daphnia pulex. / Rho, Mina; Schaack, Sarah; Gao, Xiang; Kim, Sun; Lynch, Michael; Tang, Haixu.

In: BMC Genomics, Vol. 11, No. 1, 425, 09.07.2010.

Research output: Contribution to journalArticle

Rho, M, Schaack, S, Gao, X, Kim, S, Lynch, M & Tang, H 2010, 'LTR retroelements in the genome of Daphnia pulex', BMC Genomics, vol. 11, no. 1, 425. https://doi.org/10.1186/1471-2164-11-425
Rho, Mina ; Schaack, Sarah ; Gao, Xiang ; Kim, Sun ; Lynch, Michael ; Tang, Haixu. / LTR retroelements in the genome of Daphnia pulex. In: BMC Genomics. 2010 ; Vol. 11, No. 1.
@article{f3045002492e49ebaed72c86edc50899,
title = "LTR retroelements in the genome of Daphnia pulex",
abstract = "Background: Long terminal repeat (LTR) retroelements represent a successful group of transposable elements (TEs) that have played an important role in shaping the structure of many eukaryotic genomes. Here, we present a genome-wide analysis of LTR retroelements in Daphnia pulex, a cyclical parthenogen and the first crustacean for which the whole genomic sequence is available. In addition, we analyze transcriptional data and perform transposon display assays of lab-reared lineages and natural isolates to identify potential influences on TE mobility and differences in LTR retroelements loads among individuals reproducing with and without sex.Results: We conducted a comprehensive de novo search for LTR retroelements and identified 333 intact LTR retroelements representing 142 families in the D. pulex genome. While nearly half of the identified LTR retroelements belong to the gypsy group, we also found copia (95), BEL/Pao (66) and DIRS (19) retroelements. Phylogenetic analysis of reverse transcriptase sequences showed that LTR retroelements in the D. pulex genome form many lineages distinct from known families, suggesting that the majority are novel. Our investigation of transcriptional activity of LTR retroelements using tiling array data obtained from three different experimental conditions found that 71 LTR retroelements are actively transcribed. Transposon display assays of mutation-accumulation lines showed evidence for putative somatic insertions for two DIRS retroelement families. Losses of presumably heterozygous insertions were observed in lineages in which selfing occurred, but never in asexuals, highlighting the potential impact of reproductive mode on TE abundance and distribution over time. The same two families were also assayed across natural isolates (both cyclical parthenogens and obligate asexuals) and there were more retroelements in populations capable of reproducing sexually for one of the two families assayed.Conclusions: Given the importance of LTR retroelements activity in the evolution of other genomes, this comprehensive survey provides insight into the potential impact of LTR retroelements on the genome of D. pulex, a cyclically parthenogenetic microcrustacean that has served as an ecological model for over a century.",
author = "Mina Rho and Sarah Schaack and Xiang Gao and Sun Kim and Michael Lynch and Haixu Tang",
year = "2010",
month = "7",
day = "9",
doi = "10.1186/1471-2164-11-425",
language = "English (US)",
volume = "11",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - LTR retroelements in the genome of Daphnia pulex

AU - Rho, Mina

AU - Schaack, Sarah

AU - Gao, Xiang

AU - Kim, Sun

AU - Lynch, Michael

AU - Tang, Haixu

PY - 2010/7/9

Y1 - 2010/7/9

N2 - Background: Long terminal repeat (LTR) retroelements represent a successful group of transposable elements (TEs) that have played an important role in shaping the structure of many eukaryotic genomes. Here, we present a genome-wide analysis of LTR retroelements in Daphnia pulex, a cyclical parthenogen and the first crustacean for which the whole genomic sequence is available. In addition, we analyze transcriptional data and perform transposon display assays of lab-reared lineages and natural isolates to identify potential influences on TE mobility and differences in LTR retroelements loads among individuals reproducing with and without sex.Results: We conducted a comprehensive de novo search for LTR retroelements and identified 333 intact LTR retroelements representing 142 families in the D. pulex genome. While nearly half of the identified LTR retroelements belong to the gypsy group, we also found copia (95), BEL/Pao (66) and DIRS (19) retroelements. Phylogenetic analysis of reverse transcriptase sequences showed that LTR retroelements in the D. pulex genome form many lineages distinct from known families, suggesting that the majority are novel. Our investigation of transcriptional activity of LTR retroelements using tiling array data obtained from three different experimental conditions found that 71 LTR retroelements are actively transcribed. Transposon display assays of mutation-accumulation lines showed evidence for putative somatic insertions for two DIRS retroelement families. Losses of presumably heterozygous insertions were observed in lineages in which selfing occurred, but never in asexuals, highlighting the potential impact of reproductive mode on TE abundance and distribution over time. The same two families were also assayed across natural isolates (both cyclical parthenogens and obligate asexuals) and there were more retroelements in populations capable of reproducing sexually for one of the two families assayed.Conclusions: Given the importance of LTR retroelements activity in the evolution of other genomes, this comprehensive survey provides insight into the potential impact of LTR retroelements on the genome of D. pulex, a cyclically parthenogenetic microcrustacean that has served as an ecological model for over a century.

AB - Background: Long terminal repeat (LTR) retroelements represent a successful group of transposable elements (TEs) that have played an important role in shaping the structure of many eukaryotic genomes. Here, we present a genome-wide analysis of LTR retroelements in Daphnia pulex, a cyclical parthenogen and the first crustacean for which the whole genomic sequence is available. In addition, we analyze transcriptional data and perform transposon display assays of lab-reared lineages and natural isolates to identify potential influences on TE mobility and differences in LTR retroelements loads among individuals reproducing with and without sex.Results: We conducted a comprehensive de novo search for LTR retroelements and identified 333 intact LTR retroelements representing 142 families in the D. pulex genome. While nearly half of the identified LTR retroelements belong to the gypsy group, we also found copia (95), BEL/Pao (66) and DIRS (19) retroelements. Phylogenetic analysis of reverse transcriptase sequences showed that LTR retroelements in the D. pulex genome form many lineages distinct from known families, suggesting that the majority are novel. Our investigation of transcriptional activity of LTR retroelements using tiling array data obtained from three different experimental conditions found that 71 LTR retroelements are actively transcribed. Transposon display assays of mutation-accumulation lines showed evidence for putative somatic insertions for two DIRS retroelement families. Losses of presumably heterozygous insertions were observed in lineages in which selfing occurred, but never in asexuals, highlighting the potential impact of reproductive mode on TE abundance and distribution over time. The same two families were also assayed across natural isolates (both cyclical parthenogens and obligate asexuals) and there were more retroelements in populations capable of reproducing sexually for one of the two families assayed.Conclusions: Given the importance of LTR retroelements activity in the evolution of other genomes, this comprehensive survey provides insight into the potential impact of LTR retroelements on the genome of D. pulex, a cyclically parthenogenetic microcrustacean that has served as an ecological model for over a century.

UR - http://www.scopus.com/inward/record.url?scp=77954344477&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954344477&partnerID=8YFLogxK

U2 - 10.1186/1471-2164-11-425

DO - 10.1186/1471-2164-11-425

M3 - Article

VL - 11

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

IS - 1

M1 - 425

ER -