Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event

Juan A. Durazo, Eric Kostelich, Alex Mahalov

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%–80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.

Original languageEnglish (US)
Pages (from-to)9652-9669
Number of pages18
JournalJournal of Geophysical Research Atmospheres
Issue number9
StatePublished - Sep 2017


  • Kalman filter
  • data assimilation
  • geomagnetic storm
  • targeted observations

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event'. Together they form a unique fingerprint.

Cite this