LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications

Wu Xu, Alan J. Shusterman, Robert Marzke, Charles Angell

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Synthesis, characterization, ionic conductivity, electrochemical stability, and lithium-ion transport number of an asymmetric version of the successful orthoborate lithium salt lithium bis(oxalato)borate (LiBOB), are described. The salt, lithium (malonato oxalato) borate (LiMOB), is thermally stable up to 273°C. It is poorly soluble in common organic solvents such as 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, dimethyl carbonate, and propylene carbonate, but has moderate solubility in γ-butyrolactone (GBL) and N,N-dimethylformamide (DMF), and high solubility in dimethyl sulfoxide (DMSO). The 0.5 M solutions of LiMOB in GBL, DMSO, and DMF show high conductivities (5.0 × 10-3 S cm-1, 5.1 × 10-3 S cm-1, and 11.8 × 10-3 S cm -1 at 25°C, respectively) relative to most 0.5 M nonaqueous solutions. Even the room temperature conductivity of the 0.08 M LiMOB-PC solution is close to 10-3 S cm-1. The conductivities of LiMOB solutions are close to those of LiBOB solutions, which has been demonstrated in recent studies to be a successful substitute for LiPF 6 in lithium-ion batteries. The cyclic voltammograms show that LiMOB solutions in PC and GBL have electrochemical stability as high as 4.3 V vs. Li+/Li. The lithium-ion transport number at room temperature for 0.5 M LiMOB in DMSO-d6 was 0.36, obtained from self-diffusivity measurement by the pulsed field gradient spin echo nuclear magnetic resonance technique. The highest occupied molecular orbital energy, which is usually correlated with electrochemical stability has been calculated, and electrostatic potential maps for the new anion and its fluorinated derivatives are presented. They suggest that the fluorinated analogue of LiMOB should be more stable and more soluble, and may have unique oroperties.

Original languageEnglish (US)
JournalJournal of the Electrochemical Society
Volume151
Issue number4
DOIs
StatePublished - 2004

Fingerprint

Borates
borates
Lithium
Salts
lithium
salts
Dimethyl sulfoxide
Dimethyl Sulfoxide
Dimethylformamide
conductivity
Carbonates
carbonates
Solubility
solubility
Ions
ions
Molecular orbitals
Ionic conductivity
Acetonitrile
room temperature

ASJC Scopus subject areas

  • Electrochemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

Cite this

LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications. / Xu, Wu; Shusterman, Alan J.; Marzke, Robert; Angell, Charles.

In: Journal of the Electrochemical Society, Vol. 151, No. 4, 2004.

Research output: Contribution to journalArticle

@article{1f7252d6da034e0eb5f503707d696434,
title = "LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications",
abstract = "Synthesis, characterization, ionic conductivity, electrochemical stability, and lithium-ion transport number of an asymmetric version of the successful orthoborate lithium salt lithium bis(oxalato)borate (LiBOB), are described. The salt, lithium (malonato oxalato) borate (LiMOB), is thermally stable up to 273°C. It is poorly soluble in common organic solvents such as 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, dimethyl carbonate, and propylene carbonate, but has moderate solubility in γ-butyrolactone (GBL) and N,N-dimethylformamide (DMF), and high solubility in dimethyl sulfoxide (DMSO). The 0.5 M solutions of LiMOB in GBL, DMSO, and DMF show high conductivities (5.0 × 10-3 S cm-1, 5.1 × 10-3 S cm-1, and 11.8 × 10-3 S cm -1 at 25°C, respectively) relative to most 0.5 M nonaqueous solutions. Even the room temperature conductivity of the 0.08 M LiMOB-PC solution is close to 10-3 S cm-1. The conductivities of LiMOB solutions are close to those of LiBOB solutions, which has been demonstrated in recent studies to be a successful substitute for LiPF 6 in lithium-ion batteries. The cyclic voltammograms show that LiMOB solutions in PC and GBL have electrochemical stability as high as 4.3 V vs. Li+/Li. The lithium-ion transport number at room temperature for 0.5 M LiMOB in DMSO-d6 was 0.36, obtained from self-diffusivity measurement by the pulsed field gradient spin echo nuclear magnetic resonance technique. The highest occupied molecular orbital energy, which is usually correlated with electrochemical stability has been calculated, and electrostatic potential maps for the new anion and its fluorinated derivatives are presented. They suggest that the fluorinated analogue of LiMOB should be more stable and more soluble, and may have unique oroperties.",
author = "Wu Xu and Shusterman, {Alan J.} and Robert Marzke and Charles Angell",
year = "2004",
doi = "10.1149/1.1651528",
language = "English (US)",
volume = "151",
journal = "Journal of the Electrochemical Society",
issn = "0013-4651",
publisher = "Electrochemical Society, Inc.",
number = "4",

}

TY - JOUR

T1 - LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications

AU - Xu, Wu

AU - Shusterman, Alan J.

AU - Marzke, Robert

AU - Angell, Charles

PY - 2004

Y1 - 2004

N2 - Synthesis, characterization, ionic conductivity, electrochemical stability, and lithium-ion transport number of an asymmetric version of the successful orthoborate lithium salt lithium bis(oxalato)borate (LiBOB), are described. The salt, lithium (malonato oxalato) borate (LiMOB), is thermally stable up to 273°C. It is poorly soluble in common organic solvents such as 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, dimethyl carbonate, and propylene carbonate, but has moderate solubility in γ-butyrolactone (GBL) and N,N-dimethylformamide (DMF), and high solubility in dimethyl sulfoxide (DMSO). The 0.5 M solutions of LiMOB in GBL, DMSO, and DMF show high conductivities (5.0 × 10-3 S cm-1, 5.1 × 10-3 S cm-1, and 11.8 × 10-3 S cm -1 at 25°C, respectively) relative to most 0.5 M nonaqueous solutions. Even the room temperature conductivity of the 0.08 M LiMOB-PC solution is close to 10-3 S cm-1. The conductivities of LiMOB solutions are close to those of LiBOB solutions, which has been demonstrated in recent studies to be a successful substitute for LiPF 6 in lithium-ion batteries. The cyclic voltammograms show that LiMOB solutions in PC and GBL have electrochemical stability as high as 4.3 V vs. Li+/Li. The lithium-ion transport number at room temperature for 0.5 M LiMOB in DMSO-d6 was 0.36, obtained from self-diffusivity measurement by the pulsed field gradient spin echo nuclear magnetic resonance technique. The highest occupied molecular orbital energy, which is usually correlated with electrochemical stability has been calculated, and electrostatic potential maps for the new anion and its fluorinated derivatives are presented. They suggest that the fluorinated analogue of LiMOB should be more stable and more soluble, and may have unique oroperties.

AB - Synthesis, characterization, ionic conductivity, electrochemical stability, and lithium-ion transport number of an asymmetric version of the successful orthoborate lithium salt lithium bis(oxalato)borate (LiBOB), are described. The salt, lithium (malonato oxalato) borate (LiMOB), is thermally stable up to 273°C. It is poorly soluble in common organic solvents such as 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, dimethyl carbonate, and propylene carbonate, but has moderate solubility in γ-butyrolactone (GBL) and N,N-dimethylformamide (DMF), and high solubility in dimethyl sulfoxide (DMSO). The 0.5 M solutions of LiMOB in GBL, DMSO, and DMF show high conductivities (5.0 × 10-3 S cm-1, 5.1 × 10-3 S cm-1, and 11.8 × 10-3 S cm -1 at 25°C, respectively) relative to most 0.5 M nonaqueous solutions. Even the room temperature conductivity of the 0.08 M LiMOB-PC solution is close to 10-3 S cm-1. The conductivities of LiMOB solutions are close to those of LiBOB solutions, which has been demonstrated in recent studies to be a successful substitute for LiPF 6 in lithium-ion batteries. The cyclic voltammograms show that LiMOB solutions in PC and GBL have electrochemical stability as high as 4.3 V vs. Li+/Li. The lithium-ion transport number at room temperature for 0.5 M LiMOB in DMSO-d6 was 0.36, obtained from self-diffusivity measurement by the pulsed field gradient spin echo nuclear magnetic resonance technique. The highest occupied molecular orbital energy, which is usually correlated with electrochemical stability has been calculated, and electrostatic potential maps for the new anion and its fluorinated derivatives are presented. They suggest that the fluorinated analogue of LiMOB should be more stable and more soluble, and may have unique oroperties.

UR - http://www.scopus.com/inward/record.url?scp=2042441109&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2042441109&partnerID=8YFLogxK

U2 - 10.1149/1.1651528

DO - 10.1149/1.1651528

M3 - Article

VL - 151

JO - Journal of the Electrochemical Society

JF - Journal of the Electrochemical Society

SN - 0013-4651

IS - 4

ER -