Limiting efficiencies of intermediate band solar cell assisted with multiple exciton generation

Jongwon Lee, Christiana Honsberg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We propose the hybrid thermodynamic model using the intermediate band solar cells assisted with multiple exciton generation. We have calculated this thermodynamic model under blackbody radiation and standard AM1.5 spectrum and changed concentration to compare the conventional intermediate band solar cells. Because of multiple electron and hole pair at the conduction band edge, its maximum efficiencies and optimum bandgaps have been enhanced compared to conventional intermediate band solar cells. The maximum efficiencies of this solar cell are both 47.31 (Blackbody Radiation) and 49.85 (AM1.5G) percent for one sun and 65.07 (Blackbody Radiation) and 67.83 (AM1.5D) percent for maximum concentration. And its corresponding overall bandgap energies are also reduced because of multiple electron and hole pairs.

Original languageEnglish (US)
Title of host publicationProgram - 37th IEEE Photovoltaic Specialists Conference, PVSC 2011
Pages2074-2077
Number of pages4
DOIs
StatePublished - Dec 1 2011
Event37th IEEE Photovoltaic Specialists Conference, PVSC 2011 - Seattle, WA, United States
Duration: Jun 19 2011Jun 24 2011

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371

Other

Other37th IEEE Photovoltaic Specialists Conference, PVSC 2011
Country/TerritoryUnited States
CitySeattle, WA
Period6/19/116/24/11

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Limiting efficiencies of intermediate band solar cell assisted with multiple exciton generation'. Together they form a unique fingerprint.

Cite this