Leveraging Affirmative Interpretations from Negation Improves Natural Language Understanding

Md Mosharaf Hossain, Eduardo Blanco

Research output: Contribution to conferencePaperpeer-review

Abstract

Negation poses a challenge in many natural language understanding tasks. Inspired by the fact that understanding a negated statement often requires humans to infer affirmative interpretations, in this paper we show that doing so benefits models for three natural language understanding tasks. We present an automated procedure to collect pairs of sentences with negation and their affirmative interpretations, resulting in over 150, 000 pairs. Experimental results show that leveraging these pairs helps (a) T5 generate affirmative interpretations from negations in a previous benchmark, and (b) a RoBERTa-based classifier solve the task of natural language inference. We also leverage our pairs to build a plug-and-play neural generator that given a negated statement generates an affirmative interpretation. Then, we incorporate the pretrained generator into a RoBERTa-based classifier for sentiment analysis and show that doing so improves the results. Crucially, our proposal does not require any manual effort.

Original languageEnglish (US)
Pages5833-5847
Number of pages15
StatePublished - 2022
Event2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Abu Dhabi, United Arab Emirates
Duration: Dec 7 2022Dec 11 2022

Conference

Conference2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period12/7/2212/11/22

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Leveraging Affirmative Interpretations from Negation Improves Natural Language Understanding'. Together they form a unique fingerprint.

Cite this