Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors

Shengxue Yang, Sefaattin Tongay, Yan Li, Qu Yue, Jian Bai Xia, Shun Shen Li, Jingbo Li, Su Huai Wei

Research output: Contribution to journalArticlepeer-review

130 Scopus citations

Abstract

The ability to control the appropriate layer thickness of transition metal dichalcogenides (TMDs) affords the opportunity to engineer many properties for a variety of applications in possible technological fields. Here we demonstrate that band-gap and mobility of ReSe2 nanosheet, a new member of the TMDs, increase when the layer number decreases, thus influencing the performances of ReSe2 transistors with different layers. A single-layer ReSe2 transistor shows much higher device mobility of 9.78 cm2 V-1 s-1 than few-layer transistors (0.10 cm2 V-1 s-1). Moreover, a single-layer device shows high sensitivity to red light (633 nm) and has a light-improved mobility of 14.1 cm2 V-1 s-1. Molecular physisorption is used as "gating" to modulate the carrier density of our single-layer transistors, resulting in a high photoresponsivity (R λ) of 95 A W-1 and external quantum efficiency (EQE) of 18645% in O2 environment. This work highlights the fact that the properties of ReSe2 can be tuned in terms of the number of layers and gas molecule gating, and single-layer ReSe2 with appropriate band-gap is a promising material for future functional device applications.

Original languageEnglish (US)
Pages (from-to)7226-7231
Number of pages6
JournalNanoscale
Volume6
Issue number13
DOIs
StatePublished - Jul 7 2014
Externally publishedYes

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Layer-dependent electrical and optoelectronic responses of ReSe<sub>2</sub> nanosheet transistors'. Together they form a unique fingerprint.

Cite this