Latin squares

Charles Colbourn, Jeffrey H. Dinitz, Ian M. Wanless

Research output: Chapter in Book/Report/Conference proceedingChapter

18 Scopus citations

Abstract

Main classes 1 1 1 1 0 7 ≥ 8 ≥ 0 ≥ 2 ≥ 10 ≥ 0 ≥ 5 ≥ 1 ≥ 2 1.69 Remark Atomic squares are known to exist for the composite orders 25, 27, 49, 121, 125, 289, 361, 625, 841, 1369, 1849, 2809, 4489, 24649, and 39601.

Original languageEnglish (US)
Title of host publicationHandbook of Combinatorial Designs, Second Edition
PublisherCRC Press
Pages135-152
Number of pages18
ISBN (Electronic)9781420010541
ISBN (Print)9781584885061
StatePublished - Jan 1 2006

ASJC Scopus subject areas

  • Mathematics(all)
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Latin squares'. Together they form a unique fingerprint.

  • Cite this

    Colbourn, C., Dinitz, J. H., & Wanless, I. M. (2006). Latin squares. In Handbook of Combinatorial Designs, Second Edition (pp. 135-152). CRC Press.