Laser depth profiling studies of helium diffusion in Durango fluorapatite

Matthijs Van Soest, Brian D. Monteleone, Kip Hodges, Jeremy W. Boyce

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Ultraviolet lasers coupled with sensitive mass spectrometers provide a useful way to measure laboratory-induced noble gas diffusion profiles in minerals, thus enabling the calculation of diffusion parameters. We illustrate this laser ablation depth profiling (LADP) technique for a previously well-studied mineral-isotopic system: 4He in Durango fluorapatite. LADP studies were conducted on oriented, polished slabs from a single crystal that were heated under vacuum to a variety of temperatures between 300 and 450°C for variable times. The resolved 4He profiles exhibited error-function loss as predicted by previous bulk 4He diffusion studies. All of the slabs, regardless of crystallographic orientation, yielded modeled diffusivities that are statistically co-linear on an Arrhenius diagram, suggesting no diffusional anisotropy of 4He in this material. The data indicate an activation energy of 142.2±5.0 (2σ)kJ/mol and diffusivity at infinite temperature - reported as ln(D0) - of -4.71±0.94 (2σ)m2/s. These values imply a bulk closure temperature for 4He in Durango fluorapatite of 74°C for a 50μm radius grain, infinite cylinder geometry, and a cooling rate of 10°C/Myr.

Original languageEnglish (US)
Pages (from-to)2409-2419
Number of pages11
JournalGeochimica et Cosmochimica Acta
Volume75
Issue number9
DOIs
StatePublished - May 1 2011

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Laser depth profiling studies of helium diffusion in Durango fluorapatite'. Together they form a unique fingerprint.

Cite this