Laboratory thermal emission spectroscopy of shocked basalt from Lonar Crater, India, and implications for Mars orbital and sample data

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Whereas the thermal infrared (TIR) spectra of specific minerals and/or igneous and metamorphic rocks have been compared to data of the Martian surface, TIR data of the impactite products of the shock metamorphism of basalt have not been examined in detail. The effects of shock on the thermal infrared spectrum of Deccan basalt are described here. Sample collection at Lonar Crater, India, yielded four classes of shocked basalt: classes 1, 2, 4, and 5. Spectral features attributed to labradorite in TIR spectrum of unshocked Deccan basalt are absent in the spectrum of class 2 shocked basalt. Petrography confirms that labradorite has been replaced by diaplectic glass (maskelynite). The TIR spectrum of class 2 shocked basalt is nearly identical to that of the Los Angeles shergottite. The addition of experimentally shocked plagioclase feldspars as TIR end-members improves fits and lowers RMS errors for the deconvolution of the TIR spectrum of the maskelynite-bearing impactite, and the correct mineralogy is chosen to within 5%. Class 4 shocked basalt contains vesiculated plagioclase glass (due to more heat) and highly fractured augites. Two class 5 spectral types have primary Si-O stretching vibrations at lower wave numbers than Si and Si-K glass end-members commonly used in analyses of TIR data, agreeing with lower SiO2 abundances (∼50%) determined from two techniques. At least three differences in spectral features exist between the two class 5 spectral types that we attribute to incomplete melting in the class 5A samples based on comparison to the class 4 spectrum. These samples and their TIR spectra represent excellent analogs for Martian shocked basalt and new lithologic end-members for use in spectral libraries used to analyze TIR data from Mars.

Original languageEnglish (US)
Article numberE09006
JournalJournal of Geophysical Research E: Planets
Volume116
Issue number9
DOIs
StatePublished - 2011

Fingerprint

Emission spectroscopy
thermal emission
India
craters
basalt
mars
crater
Mars
spectroscopy
orbitals
Infrared radiation
infrared spectra
impactite
labradorite
glass
plagioclase
shergottite
shock metamorphism
Glass
shock

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

@article{2768aa7a946f4746a60351473715e3f0,
title = "Laboratory thermal emission spectroscopy of shocked basalt from Lonar Crater, India, and implications for Mars orbital and sample data",
abstract = "Whereas the thermal infrared (TIR) spectra of specific minerals and/or igneous and metamorphic rocks have been compared to data of the Martian surface, TIR data of the impactite products of the shock metamorphism of basalt have not been examined in detail. The effects of shock on the thermal infrared spectrum of Deccan basalt are described here. Sample collection at Lonar Crater, India, yielded four classes of shocked basalt: classes 1, 2, 4, and 5. Spectral features attributed to labradorite in TIR spectrum of unshocked Deccan basalt are absent in the spectrum of class 2 shocked basalt. Petrography confirms that labradorite has been replaced by diaplectic glass (maskelynite). The TIR spectrum of class 2 shocked basalt is nearly identical to that of the Los Angeles shergottite. The addition of experimentally shocked plagioclase feldspars as TIR end-members improves fits and lowers RMS errors for the deconvolution of the TIR spectrum of the maskelynite-bearing impactite, and the correct mineralogy is chosen to within 5{\%}. Class 4 shocked basalt contains vesiculated plagioclase glass (due to more heat) and highly fractured augites. Two class 5 spectral types have primary Si-O stretching vibrations at lower wave numbers than Si and Si-K glass end-members commonly used in analyses of TIR data, agreeing with lower SiO2 abundances (∼50{\%}) determined from two techniques. At least three differences in spectral features exist between the two class 5 spectral types that we attribute to incomplete melting in the class 5A samples based on comparison to the class 4 spectrum. These samples and their TIR spectra represent excellent analogs for Martian shocked basalt and new lithologic end-members for use in spectral libraries used to analyze TIR data from Mars.",
author = "Wright, {Shawn P.} and Philip Christensen and Thomas Sharp",
year = "2011",
doi = "10.1029/2010JE003785",
language = "English (US)",
volume = "116",
journal = "Journal of Geophysical Research: Atmospheres",
issn = "2169-897X",
publisher = "Wiley-Blackwell",
number = "9",

}

TY - JOUR

T1 - Laboratory thermal emission spectroscopy of shocked basalt from Lonar Crater, India, and implications for Mars orbital and sample data

AU - Wright, Shawn P.

AU - Christensen, Philip

AU - Sharp, Thomas

PY - 2011

Y1 - 2011

N2 - Whereas the thermal infrared (TIR) spectra of specific minerals and/or igneous and metamorphic rocks have been compared to data of the Martian surface, TIR data of the impactite products of the shock metamorphism of basalt have not been examined in detail. The effects of shock on the thermal infrared spectrum of Deccan basalt are described here. Sample collection at Lonar Crater, India, yielded four classes of shocked basalt: classes 1, 2, 4, and 5. Spectral features attributed to labradorite in TIR spectrum of unshocked Deccan basalt are absent in the spectrum of class 2 shocked basalt. Petrography confirms that labradorite has been replaced by diaplectic glass (maskelynite). The TIR spectrum of class 2 shocked basalt is nearly identical to that of the Los Angeles shergottite. The addition of experimentally shocked plagioclase feldspars as TIR end-members improves fits and lowers RMS errors for the deconvolution of the TIR spectrum of the maskelynite-bearing impactite, and the correct mineralogy is chosen to within 5%. Class 4 shocked basalt contains vesiculated plagioclase glass (due to more heat) and highly fractured augites. Two class 5 spectral types have primary Si-O stretching vibrations at lower wave numbers than Si and Si-K glass end-members commonly used in analyses of TIR data, agreeing with lower SiO2 abundances (∼50%) determined from two techniques. At least three differences in spectral features exist between the two class 5 spectral types that we attribute to incomplete melting in the class 5A samples based on comparison to the class 4 spectrum. These samples and their TIR spectra represent excellent analogs for Martian shocked basalt and new lithologic end-members for use in spectral libraries used to analyze TIR data from Mars.

AB - Whereas the thermal infrared (TIR) spectra of specific minerals and/or igneous and metamorphic rocks have been compared to data of the Martian surface, TIR data of the impactite products of the shock metamorphism of basalt have not been examined in detail. The effects of shock on the thermal infrared spectrum of Deccan basalt are described here. Sample collection at Lonar Crater, India, yielded four classes of shocked basalt: classes 1, 2, 4, and 5. Spectral features attributed to labradorite in TIR spectrum of unshocked Deccan basalt are absent in the spectrum of class 2 shocked basalt. Petrography confirms that labradorite has been replaced by diaplectic glass (maskelynite). The TIR spectrum of class 2 shocked basalt is nearly identical to that of the Los Angeles shergottite. The addition of experimentally shocked plagioclase feldspars as TIR end-members improves fits and lowers RMS errors for the deconvolution of the TIR spectrum of the maskelynite-bearing impactite, and the correct mineralogy is chosen to within 5%. Class 4 shocked basalt contains vesiculated plagioclase glass (due to more heat) and highly fractured augites. Two class 5 spectral types have primary Si-O stretching vibrations at lower wave numbers than Si and Si-K glass end-members commonly used in analyses of TIR data, agreeing with lower SiO2 abundances (∼50%) determined from two techniques. At least three differences in spectral features exist between the two class 5 spectral types that we attribute to incomplete melting in the class 5A samples based on comparison to the class 4 spectrum. These samples and their TIR spectra represent excellent analogs for Martian shocked basalt and new lithologic end-members for use in spectral libraries used to analyze TIR data from Mars.

UR - http://www.scopus.com/inward/record.url?scp=80053064316&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053064316&partnerID=8YFLogxK

U2 - 10.1029/2010JE003785

DO - 10.1029/2010JE003785

M3 - Article

VL - 116

JO - Journal of Geophysical Research: Atmospheres

JF - Journal of Geophysical Research: Atmospheres

SN - 2169-897X

IS - 9

M1 - E09006

ER -