Abstract

Thermincola ferriacetica is a recently isolated thermophilic, dissimilatory Fe(III)-reducing, Gram-positive bacterium with capability to generate electrical current via anode respiration. Our goals were to determine the maximum rates of anode respiration by T. ferriacetica and to perform a detailed microscopic and electrochemical characterization of the biofilm anode. T. ferriacetica DSM 14005 was grown at 60 C on graphite-rod anodes poised at -0.06 V (vs) SHE in duplicate microbial electrolysis cells (MECs). The cultures grew rapidly until they achieved a sustained current density of 7-8 A m-2 with only 10 mM bicarbonate buffer and an average Coulombic Efficiency (CE) of 93%. Cyclic voltammetry performed at maximum current density revealed a Nernst-Monod response with a half saturation potential (EKA) of -0.127 V (vs) SHE. Confocal microscopy images revealed a thick layer of actively respiring cells of T. ferriacetica (∼38 μm), which is the first documentation for a gram positive anode respiring bacterium (ARB). Scanning electron microscopy showed a well-developed biofilm with a very dense network of extracellular appendages similar to Geobacter biofilms. The high current densities, a thick biofilm (∼38 μm) with multiple layers of active cells, and Nernst-Monod behavior support extracellular electron transfer (EET) through a solid conductive matrix - the first such observation for Gram-positive bacteria. Operating with a controlled anode potential enabled us to grow T. ferriacetica that can use a solid conductive matrix resulting in high current densities that are promising for MXC applications.

Original languageEnglish (US)
Pages (from-to)4934-4940
Number of pages7
JournalEnvironmental Science and Technology
Volume47
Issue number9
DOIs
StatePublished - May 7 2013

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Fingerprint Dive into the research topics of 'Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica'. Together they form a unique fingerprint.

  • Cite this