Kac's isospectrality question revisited in neutrino billiards

Pei Yu, Barbara Dietz, Hong Ya Xu, Lei Ying, Liang Huang, Ying Cheng Lai

Research output: Contribution to journalArticle

Abstract

"Can one hear the shape of a drum?" Kac raised this famous question in 1966, referring to the possibility of the existence of nonisometric planar domains with identical Dirichlet eigenvalue spectra of the Laplacian. Pairs of nonisometric isospectral billiards were eventually found by employing the transplantation method which was deduced from Sunada's theorem. Our main focus is the question to what extent isospectrality of nonrelativistic quantum billiards is present in the corresponding relativistic case, i.e., for massless spin-1/2 particles governed by the Dirac equation and confined to a domain of corresponding shape by imposing boundary conditions on the wave function components. We consider those for neutrino billiards [Berry and Mondragon, Proc. R. Soc. London A 412, 53 (1987)2053-916910.1098/rspa.1987.0080] and demonstrate that the transplantation method fails and thus isospectrality is lost when changing from the nonrelativistic to the relativistic case. To confirm this we compute the eigenvalues of pairs of neutrino billiards with the shapes of various billiards which are known to be isospectral in the nonrelativistic limit. Furthermore, we investigate their spectral properties, in particular, to find out whether not only their eigenvalues but also the fluctuations in their spectra and their length spectra differ.

Original languageEnglish (US)
Article number032215
JournalPhysical Review E
Volume101
Issue number3
DOIs
StatePublished - Mar 2020

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Kac's isospectrality question revisited in neutrino billiards'. Together they form a unique fingerprint.

  • Cite this