Abstract
In this paper, a mathematical relationship between temperature and solar irradiance is established in order to reduce the sample space and provide joint probabilistic forecasts. These forecasts can then be used for the purpose of stochastic optimization in power systems. A Volterra system type of model is derived to characterize the dependence of temperature on solar irradiance. A dataset from NOAA weather station in California is used to validate the fit of the model. Using the model, probabilistic forecasts of both temperature and irradiance are provided and the performance of the forecasting technique highlights the efficacy of the proposed approach. Results are indicative of the fact that the underlying correlation between temperature and irradiance is well captured and will therefore be useful to produce future scenarios of temperature and irradiance while approximating the underlying sample space appropriately.
Original language | English (US) |
---|---|
Title of host publication | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3819-3823 |
Number of pages | 5 |
Volume | 2018-April |
ISBN (Print) | 9781538646588 |
DOIs | |
State | Published - Sep 10 2018 |
Event | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada Duration: Apr 15 2018 → Apr 20 2018 |
Other
Other | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 |
---|---|
Country | Canada |
City | Calgary |
Period | 4/15/18 → 4/20/18 |
Keywords
- Probabilistic forecasts
- Solar irradiance
- Stochastic optimization
- Temperature
- Volterra system
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering