Abstract
Camptothecin (CPT) binds reversibly to, and thereby stabilizes, the cleavable complex formed between DNA and topoisomerase I. The nature of the interaction of CPT with the DNA-topoisomerase I binary complex was studied by the use of two affinity labeling reagents structurally related to camptothecin: 10-bromoacetamidomethylcamptothecin (BrCPT) and 7-methyl-10-bromoacetamidomethyl-campothecin (BrCPTMe). These compounds have been shown to trap the DNA-topoisomerase I complex irreversibly. Although cleavage of DNA plasmid mediated by topoisomerase I and camptothecin was reduced significantly by treatment with high salt or excess competitor DNA, enzyme-mediated DNA cleavage stabilized by BrCTPMe persisted for at least 4 h after similar treatment. The production of irreversible topoisomerase I-DNA cleavage was time-dependent, suggesting that BrCPTMe first bound noncovalently to the enzyme-DNA complex and, in a second slower step, alkylated the enzyme or DNA in a manner that prevented DNA ligation. The formation of a covalent linkage was supported by experiments that employed [3H]BrCPT, which was shown to label topoisomerase I within the enzyme-DNA complex. [3H]BrCPT labeling of topoisomerase I was enhanced greatly by the presence of DNA; very little labeling of isolated topoisomerase I or isolated DNA occurred. Even in the presence of DNA, [3H]BrCPT labeling of topoisomerase I was inhibited by camptothecin, suggesting that both CPT and BrCPT bound to the same site on the DNA-topoisomerase I binary complex. These studies provide further evidence that a binding site for camptothecin is created as the DNA-topoisomerase I complex is formed and suggest that the A-ring of camptothecin is proximate to an enzyme residue.
Original language | English (US) |
---|---|
Pages (from-to) | 19287-19295 |
Number of pages | 9 |
Journal | Journal of Biological Chemistry |
Volume | 265 |
Issue number | 31 |
State | Published - 1990 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology