Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations

B. S. Arora, J. Morgan, S. M. Ord, S. J. Tingay, N. Hurley-Walker, M. Bell, G. Bernardi, N. D R Bhat, F. Briggs, J. R. Callingham, A. A. Deshpande, K. S. Dwarakanath, A. Ewall-Wice, L. Feng, B. Q. For, P. Hancock, B. J. Hazelton, L. Hindson, Daniel Jacobs, M. Johnston-HollittA. D. Kapińska, N. Kudryavtseva, E. Lenc, B. McKinley, D. Mitchell, D. Oberoi, A. R. Offringa, B. Pindor, P. Procopio, J. Riding, L. Staveley-Smith, R. B. Wayth, C. Wu, Q. Zheng, Judd Bowman, R. J. Cappallo, B. E. Corey, D. Emrich, R. Goeke, L. J. Greenhill, D. L. Kaplan, J. C. Kasper, E. Kratzenberg, C. J. Lonsdale, M. J. Lynch, S. R. McWhirter, M. F. Morales, E. Morgan, T. Prabu, A. E E Rogers, A. Roshi, N. Udaya Shankar, K. S. Srivani, R. Subrahmanyan, M. Waterson, R. L. Webster, A. R. Whitney, A. Williams, And C L Williams

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

Original languageEnglish (US)
Article numbere029
JournalPublications of the Astronomical Society of Australia
Volume32
DOIs
StatePublished - Feb 16 2015

Fingerprint

ionospherics
GPS
ionospheres
receivers
modeling
ionosphere
stations
gradients
instrument receivers
radio astronomy
field of view
comparison
effect
observatories
magnets
radio
shift
astronomy
estimates
observatory

Keywords

  • atmospheric effects
  • techniques: interferometric

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Ionospheric Modelling using GPS to Calibrate the MWA. I : Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations. / Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, N. D R; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B. Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, Daniel; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, Judd; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E E; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, And C L.

In: Publications of the Astronomical Society of Australia, Vol. 32, e029, 16.02.2015.

Research output: Contribution to journalArticle

Arora, BS, Morgan, J, Ord, SM, Tingay, SJ, Hurley-Walker, N, Bell, M, Bernardi, G, Bhat, NDR, Briggs, F, Callingham, JR, Deshpande, AA, Dwarakanath, KS, Ewall-Wice, A, Feng, L, For, BQ, Hancock, P, Hazelton, BJ, Hindson, L, Jacobs, D, Johnston-Hollitt, M, Kapińska, AD, Kudryavtseva, N, Lenc, E, McKinley, B, Mitchell, D, Oberoi, D, Offringa, AR, Pindor, B, Procopio, P, Riding, J, Staveley-Smith, L, Wayth, RB, Wu, C, Zheng, Q, Bowman, J, Cappallo, RJ, Corey, BE, Emrich, D, Goeke, R, Greenhill, LJ, Kaplan, DL, Kasper, JC, Kratzenberg, E, Lonsdale, CJ, Lynch, MJ, McWhirter, SR, Morales, MF, Morgan, E, Prabu, T, Rogers, AEE, Roshi, A, Shankar, NU, Srivani, KS, Subrahmanyan, R, Waterson, M, Webster, RL, Whitney, AR, Williams, A & Williams, ACL 2015, 'Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations', Publications of the Astronomical Society of Australia, vol. 32, e029. https://doi.org/10.1017/pasa.2015.29
Arora, B. S. ; Morgan, J. ; Ord, S. M. ; Tingay, S. J. ; Hurley-Walker, N. ; Bell, M. ; Bernardi, G. ; Bhat, N. D R ; Briggs, F. ; Callingham, J. R. ; Deshpande, A. A. ; Dwarakanath, K. S. ; Ewall-Wice, A. ; Feng, L. ; For, B. Q. ; Hancock, P. ; Hazelton, B. J. ; Hindson, L. ; Jacobs, Daniel ; Johnston-Hollitt, M. ; Kapińska, A. D. ; Kudryavtseva, N. ; Lenc, E. ; McKinley, B. ; Mitchell, D. ; Oberoi, D. ; Offringa, A. R. ; Pindor, B. ; Procopio, P. ; Riding, J. ; Staveley-Smith, L. ; Wayth, R. B. ; Wu, C. ; Zheng, Q. ; Bowman, Judd ; Cappallo, R. J. ; Corey, B. E. ; Emrich, D. ; Goeke, R. ; Greenhill, L. J. ; Kaplan, D. L. ; Kasper, J. C. ; Kratzenberg, E. ; Lonsdale, C. J. ; Lynch, M. J. ; McWhirter, S. R. ; Morales, M. F. ; Morgan, E. ; Prabu, T. ; Rogers, A. E E ; Roshi, A. ; Shankar, N. Udaya ; Srivani, K. S. ; Subrahmanyan, R. ; Waterson, M. ; Webster, R. L. ; Whitney, A. R. ; Williams, A. ; Williams, And C L. / Ionospheric Modelling using GPS to Calibrate the MWA. I : Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations. In: Publications of the Astronomical Society of Australia. 2015 ; Vol. 32.
@article{789fd9536fbd4fc4b8f6f1c1c69fb24c,
title = "Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations",
abstract = "We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.",
keywords = "atmospheric effects, techniques: interferometric",
author = "Arora, {B. S.} and J. Morgan and Ord, {S. M.} and Tingay, {S. J.} and N. Hurley-Walker and M. Bell and G. Bernardi and Bhat, {N. D R} and F. Briggs and Callingham, {J. R.} and Deshpande, {A. A.} and Dwarakanath, {K. S.} and A. Ewall-Wice and L. Feng and For, {B. Q.} and P. Hancock and Hazelton, {B. J.} and L. Hindson and Daniel Jacobs and M. Johnston-Hollitt and Kapińska, {A. D.} and N. Kudryavtseva and E. Lenc and B. McKinley and D. Mitchell and D. Oberoi and Offringa, {A. R.} and B. Pindor and P. Procopio and J. Riding and L. Staveley-Smith and Wayth, {R. B.} and C. Wu and Q. Zheng and Judd Bowman and Cappallo, {R. J.} and Corey, {B. E.} and D. Emrich and R. Goeke and Greenhill, {L. J.} and Kaplan, {D. L.} and Kasper, {J. C.} and E. Kratzenberg and Lonsdale, {C. J.} and Lynch, {M. J.} and McWhirter, {S. R.} and Morales, {M. F.} and E. Morgan and T. Prabu and Rogers, {A. E E} and A. Roshi and Shankar, {N. Udaya} and Srivani, {K. S.} and R. Subrahmanyan and M. Waterson and Webster, {R. L.} and Whitney, {A. R.} and A. Williams and Williams, {And C L}",
year = "2015",
month = "2",
day = "16",
doi = "10.1017/pasa.2015.29",
language = "English (US)",
volume = "32",
journal = "Publications of the Astronomical Society of Australia",
issn = "1448-6083",
publisher = "Cambridge University Press",

}

TY - JOUR

T1 - Ionospheric Modelling using GPS to Calibrate the MWA. I

T2 - Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations

AU - Arora, B. S.

AU - Morgan, J.

AU - Ord, S. M.

AU - Tingay, S. J.

AU - Hurley-Walker, N.

AU - Bell, M.

AU - Bernardi, G.

AU - Bhat, N. D R

AU - Briggs, F.

AU - Callingham, J. R.

AU - Deshpande, A. A.

AU - Dwarakanath, K. S.

AU - Ewall-Wice, A.

AU - Feng, L.

AU - For, B. Q.

AU - Hancock, P.

AU - Hazelton, B. J.

AU - Hindson, L.

AU - Jacobs, Daniel

AU - Johnston-Hollitt, M.

AU - Kapińska, A. D.

AU - Kudryavtseva, N.

AU - Lenc, E.

AU - McKinley, B.

AU - Mitchell, D.

AU - Oberoi, D.

AU - Offringa, A. R.

AU - Pindor, B.

AU - Procopio, P.

AU - Riding, J.

AU - Staveley-Smith, L.

AU - Wayth, R. B.

AU - Wu, C.

AU - Zheng, Q.

AU - Bowman, Judd

AU - Cappallo, R. J.

AU - Corey, B. E.

AU - Emrich, D.

AU - Goeke, R.

AU - Greenhill, L. J.

AU - Kaplan, D. L.

AU - Kasper, J. C.

AU - Kratzenberg, E.

AU - Lonsdale, C. J.

AU - Lynch, M. J.

AU - McWhirter, S. R.

AU - Morales, M. F.

AU - Morgan, E.

AU - Prabu, T.

AU - Rogers, A. E E

AU - Roshi, A.

AU - Shankar, N. Udaya

AU - Srivani, K. S.

AU - Subrahmanyan, R.

AU - Waterson, M.

AU - Webster, R. L.

AU - Whitney, A. R.

AU - Williams, A.

AU - Williams, And C L

PY - 2015/2/16

Y1 - 2015/2/16

N2 - We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

AB - We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

KW - atmospheric effects

KW - techniques: interferometric

UR - http://www.scopus.com/inward/record.url?scp=84941921400&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84941921400&partnerID=8YFLogxK

U2 - 10.1017/pasa.2015.29

DO - 10.1017/pasa.2015.29

M3 - Article

AN - SCOPUS:84941921400

VL - 32

JO - Publications of the Astronomical Society of Australia

JF - Publications of the Astronomical Society of Australia

SN - 1448-6083

M1 - e029

ER -