Interval orders and dimension

Henry Kierstead, W. T. Trotter

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.

Original languageEnglish (US)
Pages (from-to)179-188
Number of pages10
JournalDiscrete Mathematics
Volume213
Issue number1-3
StatePublished - Feb 28 2000

Fingerprint

Interval Order
Isomorphic
Integer

Keywords

  • Dimension
  • Interval order
  • Overlap graph

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Kierstead, H., & Trotter, W. T. (2000). Interval orders and dimension. Discrete Mathematics, 213(1-3), 179-188.

Interval orders and dimension. / Kierstead, Henry; Trotter, W. T.

In: Discrete Mathematics, Vol. 213, No. 1-3, 28.02.2000, p. 179-188.

Research output: Contribution to journalArticle

Kierstead, H & Trotter, WT 2000, 'Interval orders and dimension', Discrete Mathematics, vol. 213, no. 1-3, pp. 179-188.
Kierstead H, Trotter WT. Interval orders and dimension. Discrete Mathematics. 2000 Feb 28;213(1-3):179-188.
Kierstead, Henry ; Trotter, W. T. / Interval orders and dimension. In: Discrete Mathematics. 2000 ; Vol. 213, No. 1-3. pp. 179-188.
@article{8a1ffb2e989b42a895c85ad73adcfeb4,
title = "Interval orders and dimension",
abstract = "We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.",
keywords = "Dimension, Interval order, Overlap graph",
author = "Henry Kierstead and Trotter, {W. T.}",
year = "2000",
month = "2",
day = "28",
language = "English (US)",
volume = "213",
pages = "179--188",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - Interval orders and dimension

AU - Kierstead, Henry

AU - Trotter, W. T.

PY - 2000/2/28

Y1 - 2000/2/28

N2 - We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.

AB - We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.

KW - Dimension

KW - Interval order

KW - Overlap graph

UR - http://www.scopus.com/inward/record.url?scp=0042782987&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042782987&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0042782987

VL - 213

SP - 179

EP - 188

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -