### Abstract

We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.

Original language | English (US) |
---|---|

Pages (from-to) | 179-188 |

Number of pages | 10 |

Journal | Discrete Mathematics |

Volume | 213 |

Issue number | 1-3 |

State | Published - Feb 28 2000 |

### Fingerprint

### Keywords

- Dimension
- Interval order
- Overlap graph

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Discrete Mathematics*,

*213*(1-3), 179-188.

**Interval orders and dimension.** / Kierstead, Henry; Trotter, W. T.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 213, no. 1-3, pp. 179-188.

}

TY - JOUR

T1 - Interval orders and dimension

AU - Kierstead, Henry

AU - Trotter, W. T.

PY - 2000/2/28

Y1 - 2000/2/28

N2 - We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.

AB - We show that for every interval order X, there exists an integer t so that if Y is any interval order with dimension at least t, then Y contains a subposet isomorphic to X.

KW - Dimension

KW - Interval order

KW - Overlap graph

UR - http://www.scopus.com/inward/record.url?scp=0042782987&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042782987&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0042782987

VL - 213

SP - 179

EP - 188

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -