TY - JOUR
T1 - International variation in neighborhood walkability, transit, and recreation environments using geographic information systems
T2 - The IPEN adult study
AU - Adams, Marc
AU - Frank, Lawrence D.
AU - Schipperijn, Jasper
AU - Smith, Graham
AU - Chapman, James
AU - Christiansen, Lars B.
AU - Coffee, Neil
AU - Salvo, Deborah
AU - du Toit, Lorinne
AU - Dygrýn, Jan
AU - Hino, Adriano A kira Ferreira
AU - Lai, Poh chin
AU - Mavoa, Suzanne
AU - Pinzón, José David
AU - Van de Weghe, Nico
AU - Cerin, Ester
AU - Davey, Rachel
AU - Macfarlane, Duncan
AU - Owen, Neville
AU - Sallis, James F.
N1 - Funding Information:
We would like to acknowledge and thank Dr. Paul Hess at the University of Toronto, Canada for his assistance with the GIS comparability evaluation. Thanks to Nancy Moore for editing early drafts. Australian data collection was supported by National Health and Medical Research Council (NHMRC) of Australia Project Grant #213114. The contributions of Neville Owen were supported by NHMRC Grant #569940, NHMRC Senior Principal Research Fellow-ship #1003960, and by the Victorian Government's Operational Infrastructure Support Program. Data collection in Hong Kong was supported by the HK Research Grants Council GRF Grants (#HKU740907H and #747807H) and HKU URC Strategic Research Theme (Public Health). US data collection and Coordinating Center processing was supported by the NIH Grants R01 HL67350 (NHLBI) and R01 CA127296 (NCI). The Danish study was partly funded by the Municipality of Aarhus. Data collection in the Czech Republic was supported by the Ministry of Education Youth and Sports Grant #MSM6198959221. The study conducted in Colombia was funded by Colciencias Grant 519_2010, Fogarty and CeiBA. Data collection in New Zealand was supported by the Health Research Council of New Zealand Grant #07/356. Data collection in Mexico was supported by the CDC Foundation (project #550), which received an unrestricted training grant from the Coca-Cola Company. The UK study was funded by the Medical Research Council Grant number 75376 under the National Preventive Research Initiative.
Publisher Copyright:
© 2014 Adams et al.
PY - 2014
Y1 - 2014
N2 - Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions. Methods: The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant's residential address using 1-km and 500-m street network buffers. Results: Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability. Conclusions: Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals' physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose-response relationships from projected changes to the built environment that would otherwise be impossible.
AB - Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions. Methods: The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant's residential address using 1-km and 500-m street network buffers. Results: Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability. Conclusions: Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals' physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose-response relationships from projected changes to the built environment that would otherwise be impossible.
KW - Built environment
KW - Exercise
KW - International health
KW - Parks
KW - Physical activity
KW - Transportation
KW - Urban planning
KW - Walkability
UR - http://www.scopus.com/inward/record.url?scp=84924697110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924697110&partnerID=8YFLogxK
U2 - 10.1186/1476-072X-13-43
DO - 10.1186/1476-072X-13-43
M3 - Article
C2 - 25343966
AN - SCOPUS:84924697110
VL - 13
JO - International Journal of Health Geographics
JF - International Journal of Health Geographics
SN - 1476-072X
IS - 1
M1 - 43
ER -